Design of a 9 Gb/s CMOS Demultiplexer Using Redundant Multi-Valued logic

Redundant 다치논리 (Multi-Valued Logic)를 이용한 9 Gb/s CMOS 디멀티플렉서 설계

  • Ahn, Sun-Hong (Department of Electronics Engineering, Kangwon National University) ;
  • Kim, Jeong-Beom (Department of Electronics Engineering, Kangwon National University)
  • 안선홍 (강원대학교 전기전자공학부) ;
  • 김정범 (강원대학교 전기전자공학부)
  • Published : 2007.02.25

Abstract

This paper describes a 9.09 Gb/s CMOS demultiplexer using redundant multi-valued logic (RMVL). The proposed circuit receives serial binary data and is converted to parallel redundant multi-valued data using RMVL. The converted data are reconverted to parallel binary data. By the redundant multi-valued data conversion, the RMVL makes it possible to achieve higher operating speeds than that of a conventional binary logic. The implemented demultiplexer consists of eight integrators. Each integrator is composed of an accumulator, a window comparator, a decoder and a D flip flop. The demultiplexer is designed with Samsung $0.35{\mu}m$ standard CMOS process. The validity and effectiveness are verified through the post layout simulation. The demultiplexer is achieved the maximum data rate of 9.09 Gb/s and the average power consumption of 69.93 mW. This circuit is expected to operate at higher speed than 9.09 Gb/s in the deep-submicron process of the high operating frequency.

본 논문은 redundant 다치논리 (redundant multi-valued logic, RMVL)을 이용하여 디멀티플렉서 (demultiplexer)를 설계하였다. 설계한 회로는 RMVL을 이용하여 직렬 이진 데이터를 입력받아 병렬 다치 데이터로 변환하고 다시 병렬 이진 데이터로 변환한다. RMVL은 redundant 다치 데이터 (multi-valued data) 변환으로써 기존 방식 보다 더 높은 동작속도를 얻을 수 있도록 한다. 구현한 디멀티플렉서는 8개의 적분기로 구성되어 있다. 각 적분기는 누적기, 비교기, 디코더, D 플립플롭으로 구성된다. 0.35um 표준 CMOS 공정으로 구현하였으며 포스트 레이아웃 시뮬레이션 (post-layout simulation)을 통해 검증하였다. 본 논문의 디멀티플렉서의 최대 데이터 전송률은 9.09 Gb/s이고 평균 전력소모는 69.93 ㎽이다. 높은 동작 주파수를 가지는 초미세 공정에서 이 디멀티플렉서를 구현한다면 9.09 Gb/s보다 더 높은 속도에서 동작할 수 있을 것이다.

Keywords

References

  1. J. Savoj and B. Razvi, 'A 10Gb/s CMOS clock and data recover circuit with frequency detection', in ISSCC Dig. Tech. Papers, pp. 78-79, 2001 https://doi.org/10.1109/ISSCC.2001.912554
  2. K. Nakamura, M. Fukaishi, H. Abiko, A. Matsimoto, and M. Yotsuyanagi, 'A 6Gbps CMOS phase detecting DEMUX module using half-frequency clock', in Symp. VLSI Circuits Dig. Tech. Papers, pp. 196-197, June 1998 https://doi.org/10.1109/VLSIC.1998.688081
  3. A. Tanabe, M.Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Okihara, H. Sakuraba, T. Endoh, and F. Masuoka, '0.18 um CMOS 10Gb/s multiplexer/demultiplexer ICs using current mode logic with tolerance to threshold voltage fluctuation', IEEE J. Solid-State Circuits, vol. 36, pp. 988-996, June 2001 https://doi.org/10.1109/4.924861
  4. A. Tanabe, Y. Nakahara, A. Furukawa, and T. Mogami, 'A Redundant Multivalued Logic for a 10-Gb/s CMOS Demultiplexer IC', IEEE J. Solid-State Circuits, vol. 38, pp. 107-113, January 2003 https://doi.org/10.1109/JSSC.2002.806287
  5. S. Yasuda, Y. Ohtomo, M. Ino, Y. Kado, and T. Tsuchiya, '3-Gb/s CMOS 1:4 MUX and DEMUX ICs', IEICE Trans. Electron., vol. E78-C, no. 12, pp. 1746-1753, December 1995
  6. M. Fukaishi, 'GHz serial link transceiver using multiple-valued data representation', in NEC Corporation, Silicon System Research Laboratories, 2002
  7. C. K. Yang, R. Farjad_Rad, and M. Horowiz, 'A 0.6 um CMOS 4 Gb/s transceiver with data recovery using oversampling', in Symp. VLSI Circuits Dig. Tech. Papers, pp. 71-72, June 1997
  8. H. O. Johansson, J. Yuan, and C. Svensson, 'A 4G sample/s line-receiver in 0.8 um CMOS', in Symp. VLSI Circuits Dig. Tech. Papers, pp. 116-117, June 1996