DOI QR코드

DOI QR Code

Effect of Interlayer on TiN and CrN Thin Films of STS 420 Hybrid-Deposited by AlP and DC Magnetron Sputtering

AIP 와 스퍼터링으로 복합증착된 420 스테인리스강의 TiN과 CrN 박막에 미치는 중간층의 영향

  • Choi, Woong-Sub (Division of Materials Science and Engineering Research Institute for Functional Surface Engineering Chonnam National University) ;
  • Kim, Hyun-Seung (Division of Materials Science and Engineering Research Institute for Functional Surface Engineering Chonnam National University) ;
  • Park, Burm-Su (A. G. Optics Co.) ;
  • Lee, Kyung-Ku (R&D Center for Titanium and Special Alloys) ;
  • Lee, Doh-Jae (Division of Materials Science and Engineering Research Institute for Functional Surface Engineering Chonnam National University) ;
  • Lee, Kwang-Min (Division of Materials Science and Engineering Research Institute for Functional Surface Engineering Chonnam National University)
  • 최웅섭 (전남대학교 신소재공학부 및 기능성 표면공학연구소) ;
  • 김현승 (전남대학교 신소재공학부 및 기능성 표면공학연구소) ;
  • 박범수 (에이지 광학) ;
  • 이경구 (타이타늄.특수합금부품개발지원센터) ;
  • 이도재 (전남대학교 신소재공학부 및 기능성 표면공학연구소) ;
  • 이광민 (전남대학교 신소재공학부 및 기능성 표면공학연구소)
  • Published : 2007.05.27

Abstract

Effects of interlayer and the combination of different coating methods on the mechanical and corrosion behaviors of TiN and CrN coated on 420 stainless steel have been studied. STS 420 specimen were tempered at $300^{\circ}C$ for 1 hr in vacuum furnace. The TiN and CrN thin film with 2 ${\mu}m$ thickness were coated by arc ion plating and DC magnetron sputtering following the formation of interlayer for pure titanium and chromium with 0.2 ${\mu}m$ thickness. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and roughness tester. Mechanical properties such as hardness and adhesion also were examined. XRD patterns of TiN thin films showed that preferred TiN (111) orientation was observed. The peaks of CrN (111) and $Cr_2N$ (300) were only observed in CrN thin films deposited by arc ion plating. Both TiN and CrN deposited by arc ion plating had the higher adhesion and hardness compared to those formed by magnetron sputtering. The specimen of TiN and CrN on which interlayer deposited by magnetron sputtering and thin film deposited by arc ion plating had the highest adhesion with 22.2 N and 19.2 N. respectively. TiN and CrN samples shown the most noble corrosion potentials when the interlayers were deposited by using magnetron sputtering and the metal nitrides were deposited by using arc ion plating. The most noble corrosion potentials of TiN and CrN were found to be approximately -170 and -70 mV, respectively.

Keywords

References

  1. ASM International Handbook Committee, Stainless Steel, p.17, J. R. Davis, ASM International, U.S.A (1996)
  2. Y. G. Kim, .J. of the Korean Society for Heat Treatment, 5, 117 (1992)
  3. W. J. Chou, G. P. Yu and .J. H. Huang, Corrosion Sicence, 43, 2023 (2001) https://doi.org/10.1016/S0010-938X(01)00010-5
  4. H. C. Barshilia, M. S. Pakash, Thin Solid Film, 460, 133 (2004) https://doi.org/10.1016/j.tsf.2004.01.096
  5. J. A. Thornton, Ann. Rev. Sci., 7, 239 (1977) https://doi.org/10.1146/annurev.ms.07.080177.001323
  6. H. Melchoir, .J. Appl. Phy., 52, 5722 (1981) https://doi.org/10.1063/1.329512
  7. V. K. William Grips, H. C. Barshilia, The Solid Film, 514, 204 (2006) https://doi.org/10.1016/j.tsf.2006.03.008
  8. M.A.M Ibrahim, S. F. Korablov, Corrosion Science, 44, 815 (2002) https://doi.org/10.1016/S0010-938X(01)00102-0
  9. B. H. Jung, H. J. Kim, J. of the Korean Society for the Heat Treatment, 17, 29 (2004)
  10. H. Randhawa, Surf. Coat. Technol., 33, 53 (1987). https://doi.org/10.1016/0257-8972(87)90176-9
  11. M. S. Shiao, F. S. Shieu, Thin Film Solid, 386, 27 (2001) https://doi.org/10.1016/S0040-6090(00)01918-0
  12. S. Y. Yoon, Y. B. Lee, J. Kor. Ins. Sur. Eng., 35. 199 (2002)
  13. T. Matsue, T. Hanabusa, Y. lkeuchi, Vacuum, 66, 435 (2002) https://doi.org/10.1016/S0042-207X(02)00167-7
  14. G. S. Kim, S. Y. Lee, Sur. Coat. Tech., 171, 83 (2003) https://doi.org/10.1016/S0257-8972(03)00243-3
  15. J. C. Knight and T. F. Page, Thin Solid Films, 193/194, 431 (1990) https://doi.org/10.1016/S0040-6090(05)80053-7
  16. A. Deblanc Bauer, M. Herranen, H. Ljungcrants, J. O. Carlsson, .J. E. Sundgren, Surf. Coal. Technol., 91, 208 ( 1997) https://doi.org/10.1016/S0257-8972(97)00003-0
  17. Y. I. Chen and J. G. Duh, Surf. Coat. Technol., 46, 371 (1991) https://doi.org/10.1016/0257-8972(91)90178-Y
  18. D. S. Rickcrby, J. Bull, T. Robertson and A. Hendry, Surf. Coat. Technol., 41, 63 (1990) https://doi.org/10.1016/0257-8972(90)90130-5
  19. S. H. Harju, M. Lee, I. Lee, .J. Kor. Inst. Sur. Eng.. 30, 33 (1997)
  20. J. Takadoun, H. H. Bcnnami, Surf. Coal. Technol., 96, 371 (1997)
  21. C. B. In, B. J. Jung, W. J. Lee, J. Kor. Cer. Soc., 31,731 (1994)
  22. J. Stallard, S. Poulat, D.G. Teer, Tribology International. 39, 159 (2006) https://doi.org/10.1016/j.triboint.2005.04.011
  23. W. J. Chou, G. Y. Yu and J. H. Huang, Corrosion Science, 43, 2023 (2001) https://doi.org/10.1016/S0010-938X(01)00010-5
  24. Denny A . Jones, Principles and Prevention or Corrosion, 2nd Ed., Prentice-Hall, 143 (1997)
  25. C. Harish, M. Surya Prakash. K. S. Rajam. Thin Solid Films, 460, 133 (2004) https://doi.org/10.1016/j.tsf.2004.01.096
  26. S. J. Bull, P. R. Chalker, C. F. Ayres and D. S. Rickcrby, Mat. Sci. Technol., 39,71 (1991)
  27. Y. Massiani, A. Medjajcd, P. Gravicr and J. P. Crousier, Thin Solid Films, 37, 217 (1992)
  28. D. Lopez, C. Sanchez. A. Toro, Wear, 258, 684 (2005) https://doi.org/10.1016/j.wear.2004.09.015