DOI QR코드

DOI QR Code

Characteristics of Hafnium Oxide Gate Dielectrics Deposited by Remote Plasma-enhanced Atomic Layer Deposition using Oxygen Plasma

산소 플라즈마를 이용하여 원거리 플라즈마 원자층 증착법으로 형성된 하프늄 옥사이드 게이트 절연막의 특성 연구

  • Cho, Seung-Chan (School of Materials Science and Engineering, Pusan National University) ;
  • Jeon, Hyeong-Tag (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
  • Published : 2007.05.27

Abstract

Hafnium oxide $(HfO_2)$ films were deposited on Si(100) substrates by remote plasma-enhanced atomic layer deposition (PEALD) method at $250^{\circ}C$ using TEMAH [tetrakis(ethylmethylamino)hafnium] and $O_2$ plasma. $(HfO_2)$ films showed a relatively low carbon contamination of about 3 at %. As-deposited and annealed $(HfO_2)$ films showed amorphous and randomly oriented polycrystalline structure. respectively. The interfacial layer of $(HfO_2)$ films deposited using remote PEALD was Hf silicate and its thickness increased with increasing annealing temperature. The hysteresis of $(HfO_2)$ films became lower and the flat band voltages shifted towards the positive direction after annealing. Post-annealing process significantly changed the physical, chemical, and electrical properties of $(HfO_2)$ films. $(HfO_2)$ films deposited by remote PEALD using TEMAH and $O_2$ plasma showed generally improved film qualities compare to those of the films deposited by conventional ALD.

Keywords

References

  1. M. Houssa, R. Degraeve, P. W. Mertens, M. M. Heyns, J. S . Jeon, A. Halliyal and B. Ogle, J. Appl.. Phys., 86, 6462 (1999) https://doi.org/10.1063/1.371709
  2. G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys., 89, 5243 (2001) https://doi.org/10.1063/1.1361065
  3. P. S. Lysaght, P. J. Chen, R. Bergmann, T. Messina, R. W. Murto and H. R. Huff J. Non-Cryst. Solids, 303, 54 (2002) https://doi.org/10.1016/S0022-3093(02)00964-X
  4. J.-F. Damlencourt, O. Renault, F. Martin, M.-N. Semeria and T. Billon, Appl. Phys. Lett., 86, 141913 (2005) https://doi.org/10.1063/1.1899237
  5. Z. Zhang, B. Xia, W. L. Gladfelter and S. A. Cambell, J. Vac. Sci. Technol., A, 24, 418 (2006) https://doi.org/10.1116/1.2186660
  6. A. Deshpande, R. Inman, G. Jursich C. Takoudis, J. Vac. Sci. Technol., A, 22, 2035 (2004)
  7. K. Kukli, M. Ritala, J. Lu, A. Harsta and M. Leskela, J. Electrochem. Soc., 151, F189 (2004) https://doi.org/10.1149/1.1770934
  8. J. Lee, J. Koo, H. Sim, H Jeon and Y. Won, J. Korean. Phys. Soc., 44, 915 (2004)
  9. P. Martensson, M . Juppo, M. Ritala, M. Leskela and .J.-O. Carlsson, J. Vac. Sci. Technol., B, 17(5),2122 (1999) https://doi.org/10.1116/1.590882
  10. J. Park, H. Park and S. Kang, J. Electrochem. Soc., 149, C28 (2002) https://doi.org/10.1149/1.1423642
  11. S. Choi, J. Koo, H. Jeon and Y. Kim, J. Korean. Phys. Soc., 44, 35 (2004)
  12. H. Kim, C. Cabral, J. R. C. Lavoie and S. M. Rossnagel, J. Vac. Sci. Technol., B, 20(4), 1321 (2002) https://doi.org/10.1116/1.1486233
  13. J. Y. Kim, Y. Kim and H . Jeon, Jpn . J. Appl. Phys., 42, L414 (2003) https://doi.org/10.1143/JJAP.42.L414