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An Improved Particle Swarm Optimization Adopting Chaotic Sequences for
Nonconvex Economic Dispatch Problems
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Abstract - This paper presents a new and efficient approach for solving the economic dispatch (ED) problems with
nonconvex cost functions using particle swarm optimization (PSO). Although the PSO is easy to implement and has been
empirically shown to perform well on many optimization problems, it may easily get trapped in a local optimum when
solving problems with multiple local optima and heavily constrained. This paper proposes an improved PSO, which
combines the conventional PSO with chaotic sequences (CPSO). The chaotic sequences combined with the linearly
decreasing inertia weights in PSO are devised to improve the global searching capability and escaping from local
minimum. To verify the feasibility of the proposed method, numerical studies have been performed for two different
nonconvex ED test systems and its results are compared with those of previous works. The proposed CPSO algorithm
outperforms other state-of-the-art algorithms in solving ED problems, which consider valve-point and multi-fuels with
valve-point effects.
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1. INTRODUCTION equality and inequality constraints, which directly cannot

be solved by the traditional mathematical methods.

Most of power system optimization problems including
economic dispatch (ED) have complex and nonlinear
characteristics with heavy equality and inequality
constraints [1]. The primary objective of the ED problem
is to determine the optimal combination of power outputs
of all generating units so as to meet the required demand
at minimum cost while satisfying the equality and
inequality constraints. Conventionally, the cost function
for each unit in ED problem has been approximately
represented by a single quadratic function and is solved
using techniques  [2].
Generally, these mathematical methods require marginal
cost information to find the global optimal solution.
Unfortunately, the input-output
generating highly nonlinear because of
prohibited operating zones, valve-point loadings, and
multi-fuel effects, etc. Thus, the practical ED problem is
represented as a nonconvex optimization problem with

mathematical  programming

characteristics  of
units  are
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Dynamic programming method [3] can solve such types
of problems, but it suffers from the curse of
dimensionality. Over the past few decades, in order to
solve these problems, many salient methods have been
developed such as hierarchical numerical method [4],
genetic  algorithm [5]-[7], evolutionary programming
[81-(10], Tabu search [11], neural network approaches
[12], [13], differential evolution [14], and particle swarm
optimization [15]-[17].

Particle swarm optimization (PSO) is one of the
modern heuristic algorithms, which can be efficiently used
to solve nonlinear and non-continuous optimization
problems. The original PSO suggested by Kennedy and
Eberhart in 1995 is based on the analogy of swarm of
bird and school of fish. In PSO, each particle makes his
decision using his own experience together with his
neighbor's  experiences. The particles are drawn
stochastically toward the new position based on the
present velocity of each particle, their own previous best
performance, and the best previous performance of their
neighbors [18], [19].

Chaos, apparently disordered behavior that is
nonetheless deterministic, is a universal phenomenon that
occurs in many areas of science [20]. Coetho and Mariani
[14] combined the chaotic sequences with the mutation
factor in differential evolution. Caponetto et al.[21] applied
various chaotic

sequences in evolutionary algorithms
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(EAs) in lieu of the random numbers and Shengsong et
al. [22] adopted a chaotic hybrid algorithm to solve the
optimal power flow problems. The application of the
chaotic sequences showed the promising results in each
engineering application.

In this paper, the application of PSO with chaotic
sequences (CPSO) is proposed for solving the ED
problems with various nonconvex cost functions. The
PSO with chaotic sequences as dynamic inertia weights
can be successfully used as is the global optimizer by
enhancing the global exploration capacity. The suggested
chaotic dynamic inertial weights combine the linearly
decreasing inertial weights [23], [24] and logistic map
chaotic sequences [21] to employ the benefits of both
approaches. The employment of the chaotic sequences in
PSO is a useful strategy to improve the global searching
capability by preventing the premature convergence to
local minima.

This paper is organized as follows. After this
introduction, Section 2 describes the mathematical
formulations of ED problems. Section 3 describes the
application of chaotic sequences in PSO while Section 4
details the implementation of the proposed CPSO for
solving ED problems. In order to verify the performance
of the proposed CPSO, two ED problems with nonconvex
cost functions are tested and its results are compared
with those of previous works in Section 5. Finally, the
conclusion drawn from the study is described in Section 6.

2. FORMULATIONS OF ED PROBLEMS

2.1 Basic Economic Dispatch Formulation

The objective of the ED problem is to minimize the
total fuel cost of power plants subjected to the operating
constraints of a power system. Generally, it can be
formulated with an objective function and two constraints

(21

Fr= Y F(P) o
i=]1
F:(P:): a’i+biPi+ci13iz (2)
where,

F, total generation cost,

F, cost function of generator i,

e, b, ¢, cost coefficients of generator i,
P, power output of generator i,

n number of generators.

2.1.1 Active Power Balance Equation

For power balance, an equality constraint should be
satisfied. The total generated power should be the same
as the total load demand plus the total line loss.
However, the transmission loss is not considered in this
paper for simplicity.
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2.1.2 Minimum and Maximum Power Limits

Generation output of each generator should be laid
between maximum  limits.  The
corresponding  inequality constraints for each generator
are

minimum  and

P S P’l S f’i,max (3)

4,min
where F, ., and P, ., are the minimum and maximum

output of generator i, respectively.

2.2 ED Problem Considering Valve-Point Effects

The generating units with multi-valve steam turbines
exhibit a greater variation in the fuel-cost functions.
Since the valve point results in the ripples, a cost
function contains higher order nonlinearity. Therefore, the
cost function (2) should be replaced by the following to
consider the valve—point effects:

F:(P.) = ai+bi[,i+CiPiz+|eiSin(fi (Pi,min _Pz))| 4)

where e; and f; are the cost coefficients of generator i
reflecting valve-point effects.

2.3 ED Problem Considering Multi-Fuels with Valve-
Point Effects

Since the dispatching units can be supplied with
multi-fuel sources in practice, each unit should be
represented with several piecewise quadratic functions
reflecting the effects of fuel type changes. In general, a
piecewise quadratic function is used to represent the
input-output curve of a generator with multiple fuels [4]
and described as

ai1+bi1Pi+ci2Pi2 fuell F, ., <P <P,

a’i2+bz'2P£+ci2Pi2 fuel2 F,, <P, <P,

F(P)= (5)

a, +b,P+c, P’ fuelk P,_, <P, < P nex
where ¢,.b,.c, are the cost coefficients of generator i
for fuel type k. In general, fuels are supplied by fuel
suppliers under a multitude of contracts between the
suppliers and the utility. Determining the selection of
fuels for each unit is dictated by the contracts, and can
be solved by economic fuel dispatch [25]. This paper
assumes that such selection is given a-priori. Therefore,
to obtain an accurate and practical ED solution, the fuel
cost function should be considered with both multi-fuels
and valve-point effects simultaneously [7]. Thus, the fuel
cost function (4) should be combined with (5), and can
be represented as follows:

Fy(P) fuell Pimin <P, <P,
Flz(Pl) fuei2 P, < F <P,

F(P)= ®)

F;L(Pt) fuelk I)ik—l SR SPi,ma:(
where
Fy(P)= a,+b,P, +CikPi2+]eikSi“(fik (Pik,min _P))‘ M

i

and e, and f; are the cost coefficients of generator i



reflecting valve-point effects for fuel type k, and P nin
is the minimum output of generator { using fuel type k.

3. PARTICLE SWARM OPTIMIZATION WITH
CHAOTIC SEQUENCES

3.1 Overview of Particle Swarm Optimization

Kennedy and Eberhart developed a PSO algorithm
based on the behavior of individuals (ie, particles or
agents) of a swarm [18]. Its roots are in zoologist's
modeling of the movement of individuals within a group.
It has been noticed that members of the group seem to
share information among them, a fact that leads to
increased efficiency of the group [19]. The PSQ algorithm
searches in parallel using a group of particles. Each
particle corresponds to a candidate solution to the
problem. Particles in a swarm approach to the optimum
through its present velocity, its previous experience, and
the experience of its neighbors. In a n-dimensional search
space, the position and velocity of particle { are
represented as the vectors X, = (z;,-»%;,) and
Vi= (v, -v,) in the PSO  algorithm.  Let
Poest, = (zﬁ’“‘,-",zf:"“) and Ghest = (xla’”‘,-",zf"“‘) be the
best position of particle i and its neighbors’ best position
so far, respectively. The modified velocity and position of
each particle can be calculated using the current velocity
and the distance from Fbest; to Ghest as follows:

VIR = w i+ grmy (Poestt = X)+ ¢ rm, (Ghestt — X¥) (8)

/Yik+l=1‘rik+ V'-k+l (9)
where,
vt velocity of particle i at iteration k,
w inertia weight factor,

C, G acceleration coefficienté,

rny, ™y, random numbers between 0 and 1,
b position of particle { at iteration X,
H)eslt:c
Ghest*

best position of particle { until iteration k,

best position of the group until iteration k.

In velocity updating process, the values of parameters
such as w, ¢, and ¢ should be determined in advance.
The constants ¢, and ¢ represent the weighting of the
stochastic acceleration terms that pull each particle
toward the Pbest; and Gbest positions. Suitable selection
of inertia weight provides a balance between global
exploration and local exploitation, and results in less
iteration on average to find an optimal solution. In
general, the inertia weight w has a linearly decreasing
dynamic parameter framework (i.e, Inertial Weights
Approach [IWA] [1], [23], [24]) descending from w,,, to
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%, (0 enhance the convergence characteristics as

follows.
wmax - wmin
uf =, — e Tmin g (10)
adery ..

Here, iter,, corresponds to the maximum iteration

number and k is the current iteration number.

3.2 Application of Chaotic Sequences in PSO

One of the simplest dynamic systems evidencing
chaotic behavior is the iterator called the logistic map
[21], whose equation is described as follows:

fi= “ka—lx(l—fk—x) an

where p is a control parameter and has a real value
between [0,4]. Despite the apparent simplicity of the
equation, the solution exhibits a rich variety of behaviors.
The behavior of the system represented by (11) is
greatly changed with the variation of p. The value of u
determines whether f is stabilized at a constant size,
oscillates between a limited sequence of sizes, or behaves
chaotically in an unpredictable pattern. And also the
behavior of the system is sensitive to the initial value of
f [14], [21], [22]. Equation (11) is deterministic, displaying
chaotic dynamics when p=4.0 and f, € {0,0.25,0.50,0.75, 1},

The performance of PSO greatly depends on its

-parameters such as inertia weight factor and two

acceleration coefficients. It is clear that the first part of
(8) represents the influence of previous velocity, which
provides the necessary momentum for particles to fly
around in a search space. The inertia weight factor is a
modulus that manipulates the impact of previous velocity
on the current one. Consequently, the balance between
exploration and exploitation is treated by the value of
inertia weight. Thus, the proper control of inertia weight
is very important to find the optimum solution efficiently.
It is regarded that a larger inertia weight facilitates a
global search while a smaller inertia weight facilitates a
local search. Shi and Eberhart [23), [24] made a
significant improvement in the performance of the PSO
with a linearly varying inertia weights over the iterations,
which linearly decrease from 0.9 at the beginning of the
run to 0.4 at the end.

In this paper, in order to improve the global searching .
capability and escape from local minima, the new weight
approach, Chaotic Inertial Weights Approach (CIWA), is
defined as follows:

wf,, = wfxf, (12)

Whereas the weight in the conventional IWA decreases
monotonously from w,, to w,,,, the proposed new

weight decreases and oscillates simultaneously as shown
in Fig. 1.
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conventional weights _ chaolic sequences

weight

proposed new weights

iteration

* iter, =50, w,. =09, w,;,=04, #=40, f,=054

Fig. 1 Comparison of inertia weights for IWA and CIWA.

4. IMPLEMENTATION OF PROPOSED CPSO
ALGORITHM FOR ED PROBLEMS

Since the decision variables in ED problems are real
power outputs of generating units, the structure of a
particle is composed of a set of elements corresponding
to the generator outputs. Therefore, particle i's position at
iteration k can be represented as the vector
XE= (P,-"i,“-,P,-’f,) where n is the number of generators in
the ED problem. The velocity of particle i (e,
VE= (vfp"',vf,,)) corresponds to the generation update

quantity covering all generators.

4.1 Solution Procedure of CPSO
The process of the proposed CPSO algorithm can be
summarized as follows: -

Step 1)Initialize the position and velocity of a group at
random while satisfying constraints.

Step 2)Update the velocity of particles.

Step 3)Modify the position of particles while satisfying
constraints.

Step 4) Update Pbest and Gbest.

Step 5)Go to Step 2 until satisfying stopping criteria.

In the subsequent sections, the detailed implementation
strategies of the proposed method are described.

4.1.1 Creating Initial Position and Velocity of Particles
In the initialization process, a set of particles is created
at random as follows:

P = Pyoint TPy~ Pymin) (13)
where 7;; is a random number between [0,1] for element
J in particle i. Although the value of each element created
by (13) satisfies the inequality constraint, the problem of
equality constraint still remains to be resolved. To do
this, the position initialization process should be used
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with the treatment technique for equality and inequality
constraints.

After creating the initial position of each particle, the
velocity of each particle is also created at random. The
following strategy is used in creating the initial velocity:

(Pimin =69~ P < 0 < (Pymax +6)= B a9
where € is a small positive real number. The velocity
element j in particle i is generated at random within the
boundary. The initial FPbest of particle i is set as the
initial position of the particle and the initial Gbest is
determined as the position of the particle with minimum
cost of (1).

4.1.2 Velocity Update

To modify the position of each particle, it is necessary
to calculate the velocity of each particle in the next stage
which is obtained from (8). In this process, the new
weight approach CIWA (12) is employed to improve the
global searching capability.

4.1.3 Position Modification

The position of each particle is modified by (9). Since
the resulting position of a particle is not always
guaranteed to satisfy the equality and inequality
constraints due to over/under velocity, the position
modification procedure should be conducted with the
treatment method of equality and inequality constraints.

4.1.4 Update of Pbest and Gbest
The Pbest of each particle at iteration k+1 is updated
as follows:

k+1 A’ik+l if TC:LH<TCT
Poest;™ " = L_
: Phest; otherwise

(15)
where 7C is the value of the object function at the
position of particle {. Also, Gbest at iteration k+1 is set

as the best evaluated position among Plests*?.

4.1.5 Stopping Criteria
The proposed CPSO is terminated if the iteration
reaches a predefined maximum iteration.

42 Treatment of equality and inequality constraints
It is very important to create a group of particles
satisfying the equality and inequality constraints. That is,
summation of all elements of particle i (e, Z]P,»j)

=
should be equal to the total system demand (e, Pp) and
each element j in particle i (i.e, F;) should be within its
upper and lower limits. Therefore, it is necessary to
develop a strategy for satisfying the equality and
constraints. In [15], the
technique was developed to handle the equality and

inequality heunstic-based



inequality constraints where the strategy is also applied
in this paper.

5. CASE STUDIES

To verify the feasibility of the proposed method, two
different power systems were tested: (i) 40-unit system
with valve-point effects and (i) 10-unit system
considering multiple fuels with valve-point effects. For
each case, 100 independent trials are conducted to observe
the variation during the evolutionary processes and
quality of convergence
characteristics. The results obtained from the CPSO are
compared with those of previous works in order to show
the superiority of the proposed method.

To successfully implement the CPSQ, some parameters
must be assigned in advance. The population size NP

compare the solution and

and maximum iteration count iter,, are set to 50 and
10,000, respectively. Since the performance of PSO
depends on its parameters such as inertia weight w and
two acceleration coefficients (e, ¢ and ¢), it is very
important to determine the suitable values of parameters.
The inertia weight is varied from 0.9 (e, w,,.) to 04
(ie, w,,,), as these values are accepted as typical for
solving wide varieties of problems. Two acceleration
coefficients are determined through the experiments for
each ED problem so as to find the optimal combination.
In chaotic sequences, the control parameter g is set to
40 and initial value of f is a random number between
[0,1] except for 0, 0.25, 0.5, 0.75, and 1, respectively.

5.1 Example 1: Valve-point Effects

This system consists of 40 generating units and the
input data for 40-generator system are given in [10]. The
total demand is set to 10,500MW.

In order to find the optimal combination of acceleration
coefficients (i.e, ¢ and ¢), nine cases are considered as
given in Table I The acceleration coefficients are
determined through the experiments for this system using
the conventional PSO. The optimal values for ¢, and ¢
are selected as 2.0 and 1.0, respectively, based on the
results given in Table 1.

In Table 2, the results achieved by CPSO are
compared with those from evolutionary programming (EP)
[10], modified particle swarm optimization (MPSO) [15],
PSO-SQP (16], and DEC-SQP [14], NPSO [17], and
NPSO-LRS [17). Although the acquired best solution is
not guaranteed to be the global solution, the CPSO has
shown the superiority to the existing methods as shown
in Table 2.

re
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Table 1 Influence ol acceleration coefficients on PSO

performance

C Minimum Average

ases “ @ Cost ($) Cost ($)
1 2.0 2.0 121,7729177  122,150.2930
2 2.0 15 121,751.9378  122,080.4060
3 2.0 1.0 121,751.3390  121,977.6028
4 15 2.0 121,754.0167  122,167.8336
5 15 15 121,751.3390  122,134.5597
6 15 1.0 121,752.1647  122,081.7638
7 1.0 2.0 121,753.9811  122,344.6859
8 1.0 15 121,761.0886  122,309.8234
9 1.0 1.0 121,751.9378  122,247.2560

Table 2 Comparison of results of each method for Example 1

Methods Minimum Average Maximum  Standard
Cost ($) Cost ($) Cost ($)  Deviation
EP [10] 12262435 12338200 12574063 N/A
MPSO [15] 122252265 N/A N/A N/A
PSO-SQP [16] 12209467 12224525 N/A N/A

DEC-SQP [14] 121,7419793 1222951278 122,839.2041 386.1809
NPSO (171  121,7047391 1222213697 1229950976 N/A
NPSO-LRS [17] 1216644308 1222093185 1229813913 N/A

CPSO 1214277588 121,8106629 1229802257 2752155

The convergence characteristics of the conventional
PSO and the proposed CPSO are illustrated in Fig. 2.

x10°

130 r—
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)
%
o
o 126
5
k] PSO
3
512 CPSO
E /
2

122 P

120
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
lterations

Fig. 2 Convergence characteristics of .PSO and CPSO for
Example 1.

The generation outputs and corresponding costs of the
best solution of the proposed CPSO algorithm are
compared with those of DEC-SQP [14] and NPSO-LRS
[17] in Table 4. We have also observed that the solutions
obtained by CPSO always satisfy the equality and
inequality constraints.
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Table 4 Generation output of each generator and the
corresponding cost in 40-unit system

Unit DEC-SQP [14] NPS[?ﬂLRS CPSO
1 111.7576 113.9761 113559
2 111.5584 113.9986 110.8387
3 97.3999 97.4241 97.4016
4 179.7331 179.7327 179.73%4
5 91.6560 89.6511 94.2282
6 140.0000 105.4044 140.0000
7 300.0000 259.7502 259.5998
8 300.0000 288.4534 284.6062
9 284.5997 284.6460 284.5996
10 130.0000 204.8120 130.0000
11 168.7998 168.8311 168.8010
12 94.0000 94.0000 94.0000
13 214.7598 214.7663 214.7586
14 394.2794 394.2852 394.2782
15 304.5196 304.5187 394.2794
16 304.5196 394.2811 304.5173
17 489.2794 489.2807 489.2802
18 489.27%4 489.2832 489.2792
19 511.2794 511.2845 511.2795
20 511.2794 511.3049 511.2787
21 523.2794 523.2916 523.2796
22 523.2853 523.2853 523.2794
23 523.2847 523.2797 523.2789
24 523.2794 523.2994 523.2781
25 523.2794 523.2865 523.2794
26 523.2794 523.2936 523.2799
27 10.0000 10.0000 10.0000
28 10.0000 10.0001 10.0000
29 10.0000 10.0000 10.0000
30 90.3329 89.0139 878777
31 190.0000 190.0000 150.0000
32 190.0000 190.0000 190.0000
33 190.0000 190.0000 190.0000
34 200.0000 199.9998 200.0000
35 200.0000 165.1397 200.0000
36 200.0000 172.0275 164.8463
37 110.0000 110.0000 110.0000
38 110.0000 110.0000 110.0000
39 110.0000 93.0962 109.9999
40 511.2794 511.2996 511.2797
TP 10,500.0000 10,500.0000 10,500.0000
TC 121,741.9793 121,664.4308 121,427.7588

* TP: total power [MW], TC: total generation cost [$].

5.2 Example 2: Multi-Fuels with Valve-Point Effect

This test system consists of 10 generating units
considering multi-fuels with valve-point effects. The
input data and related constraints of the test system are
given in [7]. The total demand is set to 2,700MW.

To select the optimal acceleration coefficients for this
example, the same parameter determination strategy is
adopted as in Example 1. Through experiments, ¢, and ¢,
are set to 1.0 and 2.0, respectively.
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In Table 5, the results of the CPSO are compared with
those of conventional genetic algorithm with multiplier
updating (CGA_MU) [7], improved genetic algorithm with
multiplier updating (IGA_MU) [7], NPSO [17], and
NPSO-LRS [17). Table 5 clearly shows that the proposed
CPSO algorithm outperforms other previous works.

Table 5 Convergence results for Example 2

Methods Minimum Average Maximum  Standard
Cost ($) Cost ($) Cost ($) Deviation
CGAMU [7] 6247193 627.6087 633.8652 NA
IGA MU (7] 6245178 625.8692 630.8705 N/A
NPSO {17] 624.1624 6252180 627.4237 N/A
NPSO-LRS [17] 6241273 624.9985 626.9981 N/A
CPSO 623.8493 623.9001 623.9822 0.0284

In Table 6, the generation outputs, fuel types, and total
generation costs of the best solution obtained from the
proposed CPSO are compared with those of IGA_MU [7]
and NPSO-LRS [17].

Table 6 Comparison of results of each method for Example 2

Unit IGA_MU [7]1 NPSO-LRS [17] CPSO
F GEN F GEN F GEN
1 2 2191261 2 223332 2 2185548
2 1 211.1645 1 2121957 1 2117118
3 1 2806572 1 2762167 1 2826748
4 3 2384770 3 2394187 3 2392363
5 1 2764179 1 2746470 1 276.4919
6 3 2404672 3 2397974 3 240.0425
7 1 287.7399 1 2855388 1 290.1008
8 3 2407614 3 2406323 3 2403113
9 3 4293370 3 42902637 3 4281556
10 1 275.8518 1 2789541 1 2727203
TP 2,700.0000 2,700.0000 2,700.0000
TC 624.5178 624.1273 623.8493

6. CONCLUSION

This paper presents a new approach for solving the
nonconvex ED problems . considering valve-point and
multi-fuels with valve-point effects using an improved
PSO. The proposed CPSO method combines the
conventional PSO with chaotic sequences. The chaotic
sequences combined with the linearly decreasing inertia
weights in PSO are devised to improve the global
searching capability by preventing the premature
convergence to local minima. In order to verify the
superiority of the proposed CPSO, two ED problems with
nonconvex cost functions are tested and its results are
compared with those of previous works. The simulation



results clearly show that the proposed CPSO can be used
as an optimizer providing satisfactory solutions while
satisfying system equality and inequality constraints for
the nonconvex ED problems.
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