Comparison of Performance of Restrainers of Steel Cables and Shape Memory Alloy Bars for Multiple-Span-Simply-Supported Bridges

다경간 단순지지 교량의 강케이블 및 형상기억합금 변위제어장치의 성능 비교

  • Received : 2007.06.07
  • Accepted : 2007.10.24
  • Published : 2007.12.27

Abstract

Steel restrainer cables for multiple frame bridges in California in the United States have been shown to be effective in preventing unseating at internal hinges during the past several earthquakes. Consequently, the steel-cable-restrainer is being tested for applications on multiple-span-simply-supported (MSSS) bridges in the mid-American region. In addition, shape memory alloy (SMA) bars in tension are being studied for the same application, multiple frame bridges, the developed seismic forces are transferred to piers through the restrainers. However, in MSSS bridges, the seismic forces are transferred to abutments by the restrainers. Therefore, the abutment' behavior should also be investigated. In this study, we assessed the seismic performance of the three types of restrainers, such as steel restrainer cables, SMA in tension, and SMA in bending for an MSSS bridge from moderate to strong ground motion, bending test of an SMA bar was conducted and its analytical model was determined for this study. Nonlinear time history analyses were conducted to assess the seismic responses of the as-built and the retrofitted bridges. All three types of restrainers reduced the hinge opening and the SMA in tension was the most effective of the three devices in preventing the unseating, all restrainers produced damage on the abutment from the pulling action of the MSSS bridge due to strong ground motions, was found that the retrofit of the abutment in the pulling action is required in the installation of restrainers in MSSS bridges.

강케이블 변위제어장치는 미국 캘리포니아주에서 프레임 구조 교량의 낙교를 방지하는데 효과적인 것으로 지난 몇 차례의 지진에서 밝혀졌다. 이러한 효과를 바탕으로, 미국 중부의 다경간 단순지지 교량에 강케이블을 적용할려는 시도가 행해지고 있다. 또한, 형상기억합금의 인장거동을 이용한 변위제어장치가 동일한 적용을 위해서 연구되고 있다. 프레임 구조교량에서는 변위제어장치가 교각에 힘을 전달하지만, 다경간 단순지지 교량에서는 교대에 힘을 전달하게 된다. 따라서 이러한 교량에서는 교대의 거동을 동시에 점검해야한다. 본 연구에서는 다경간 단순지지 교량에 대한 세 가지의 변위제어장치의 성능을 비교하였다. 강케이블, 인장거동 형상기억합금 봉 및 휨거동 형상기억합금 봉을 이용한 변위제어장치의 중진 및 강진에 대한 변위제어성능 및 교대에 미치는 영향을 분석하였다. 이를 위해서 형상기억합금 봉의 휨 실험 및 해석모델을 제시하였다. 또한, 비선형 시간이력해석을 수행하여 원래의 교량과 보강된 교량의 거동을 비교하여 변위제어장치의 성능 및 영향을 파악하였다. 인장거동의 형상기억합금 봉은 내부힌지에서 열림의 상대변위를 제어하는데 가장 우수한 성능을 보여주었으나, 교대의 능동변위를 증가시켜 손상을 발생시켰다. 따라서 강진에 대해서는 변위제어장치를 설치하는 경우 교대의 능동거동에 대한 보강이 요구된다.

Keywords

References

  1. Adachi, Y., Unjoh, S. and Kondoh, M. (1999). Development of a Shape Memory Alloy Damper for Intelligent Bridge Systems, Proceedings of the International Symposium on Shape Memory Materials, Kanazawa, Japan, pp.31-34
  2. Andrawes, R. and DesRoches, R. (2005). Unseating prevention for multiple frame bridges using superelastic devices, Smart Materials and Structures, 14, s60-s67 https://doi.org/10.1088/0964-1726/14/3/008
  3. CALTRANS. (1990). Bridge Design Specifications Manual, California Department of Transportation
  4. Choi, E. (2002). Seismic analysis and retrofit of Mid America bridges, Dept. Civil and Environmental Engineering. Georgia Institute of Technology. Atlanta, GA, USA
  5. Copper, J.D., Friedland, I.M., Buckle, I.G., Nimis, R.B., and Bob, N.M. (1994). The Northridge Earthquake: progress made, lessons learned in seismic-resistant bridge design Public Roads, 58 26-36
  6. Delmont, M. (2001). SEISMIC RETROFIT OF BRIDGES USING SHAPE MEMORY ALLOYS, Thesis of Master of Science, Georgia Institute of Technology, Atlanta, Georgia
  7. DesRoches, R. and Delemont, M. (2002). Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures, 24: 325-332 https://doi.org/10.1016/S0141-0296(01)00098-0
  8. DesRoches, R., McCormick, J. and Delemont M. (2004). Cyclic Properties of Superelastic Shape Memory Alloy wires and Bars, Journal of Structural Engineering, ASCE, Vol. 130, No. 1, January, pp.38-46 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(38)
  9. Dolce, M., Cardone, D., and Marnetto, R. (2000). Implementation and testing of passive control devices based on shape memory alloys. Earthquake Engineering and Structure Dynamics, 29: pp. 945-968 https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
  10. Mander, J. B., Kim, D. K., Chen, S. S., and Premus, G. J. (1996). Response of Steel Bridge Bearings to the Reversed Cyclic Loading, Technical Report NCEER 96-0014, Buffalo, NY
  11. Maroney, B., Kutter, B., Romstad, K., Cahi, Y. H., and Vanderbilt, E.(1994). Interpretation of Large Scale Bridge Abutment Test Results, Proceedings of 3rd Annual Seismic Research Work, California Department of Transportation, CA, June 27-29
  12. Prakash, V., Powell, G.H., Campbell, S.D. and Filippou, F.C. (1992). DRAIN 2DX User Guide, Department of Civil Engineering, University of California at Berkeley
  13. Wilde K. Gardoni, P., and Fukino Y. (2000). Base isolation system with shape memory alloy device for elevated highway bridges, Engineering Structures 22, pp.222-229 https://doi.org/10.1016/S0141-0296(98)00097-2