Seismic Design of Mid-to-Low Rise Steel Moment Frames Based on Available Connection Rotation Capacity

접합부 회전능력에 기초한 중/저층 철골모멘트골조의 내진설계

  • Received : 2007.07.30
  • Accepted : 2007.11.22
  • Published : 2007.12.27

Abstract

A displacement-based seismic design procedure was proposed for mid-to-low-rise steel moment frames. The proposed method was totally different from the current R-factor approach in that it directly uses available connection rotation capacity as a primary design variable. To this end, the relationship between available connection rotation capacity and seismic response modification (R factor) was established first; this relationship has been a missing link in current ductility-based design practice. A step-by-step displacement-based iterative design procedure was then proposed and verified using inelastic dynamic analysis.

본 연구에서는 중/저층의 철골모멘트골조를 대상으로 합리적이고 실용적인 변위기반 내진설계절차를 제시하였다. 현행의 내진설계에서는 구조시스템 종별에 따라 경험적이고 획일적으로 규정된 반응수정계수를 토대로 설계가 수행되므로, 접합부가 보유한 회전능력의 적정성 여부를 검증하기가 어렵다. 본 논문에서는 실험적으로 입증된 철골모멘트골조 접합부의 가용 소성회전능력을 주요설계변수로 직접 사용하는 새로운 설계법을 제시하였다. 이 설계방안의 정립을 위해, 우선 지금까지 불분명한 관계로 남아있던 접합부의 가용 소성회전능력과 반응수정계수 사이의 관계를 합리적이고 정량적으로 정의하는 방안을 제시하였다. 이를 토대로 변위에 기반한 단계별 내진설계절차를 제시하고 비선형동적해석에 의해 방안의 타당성을 입증하였다.

Keywords

References

  1. 대한건축학회 (2005) 건축구조설계기준, 대한건축학회
  2. American Institute of Steel Construction (2006) Seismic Design Manual, AISC, Chicago, IL
  3. American Institute of Steel Construction (2006) Seismic Design Manual, AISC, Chicago, IL
  4. Chopra, A. K. (1995) Dynamics of Structures, Prentice‐ Hall, New Jersey
  5. Federal Emergency Management Agency (2000) Recommanded Seismic Design Criteria for New Steel Moment-Frame Buildings, Report No. FEMA 350, prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, D.C.
  6. Federal Emergency Management Agency (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Report No. FEMA 356, prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C.
  7. Federal Emergency Management Agency (2004) Improvement of Nonlinear Static Seismic Analysis Procedure, Report No. FEMA 440, prepared by the Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C.
  8. IBC (2003) International Building Code, International Code Council, Inc., Virginia
  9. Leelataviwat, S., Goel, S. C., and Stojadinovic, B. (2002) Energy‐based seismic design of structures using yield mechanism and target drift, Journal of Structural Engineering, ASCE, Vol. 128, No. 8, pp. 1046-1054 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1046)
  10. Medina, R. A., and Krawinkler, H. (2005) Evaluation of drift demands for the seismic performance assessment of frames, Journal of Structural Engineering, ASCE, Vol. 131, No. 7, pp. 1003-1013 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1003)
  11. Newmark, N. M., and Hall, W. J. (1982) Earthquake spectra and Design, EERI Monograph Series, EERI, Oakland
  12. Prakash, V., Powell, G., and Campbell, S. (1993) DRAIN ‐2DX base program description and user guide –m Version 1.10, Report No. UCB/SEMM‐93/17 and 93/18, University of California, Berkeley, California
  13. Uang, C. ‐M. (1991) Establishing R and Cd factors for building seismic provisions, Journal of Structural Engineering, ASCE, Vol. 117, No. 1, pp. 19-28 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:1(19)
  14. Uang, C. ‐M., Bruneau, M., and Whittaker, A. (1998) Ductile Design of Steel Structures, McGraw‐Hill, New York
  15. Wen, Y. K., and Song, S.‐H. (2003) 'Structural reliability/ redundancy under earthquakes,' Journal of Structural Engineering, ASCE, Vol. 129, No. 1, pp. 56-67 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(56)