Long-term Composting and Fertilization Impact on Dehydrogenase-producing Bacteria and Dehydrogenase Activity in Rice Paddy Soil

동일비료 장기연용 논토양의 탈수소효소 생성균과 효소활성

  • Suh, Jang-Sun (National Institute of Agricultural Science & Technology, RDA) ;
  • Kim, Su-Jung (National Institute of Agricultural Science & Technology, RDA) ;
  • Noh, Hyung-Jun (National Institute of Agricultural Science & Technology, RDA) ;
  • Kwon, Jang-Sik (National Institute of Agricultural Science & Technology, RDA) ;
  • Jung, Won-Kyo (National Institute of Agricultural Science & Technology, RDA)
  • Received : 2007.01.20
  • Accepted : 2007.06.27
  • Published : 2007.08.28

Abstract

A long-term rice paddy field, which is located in the National Institute of Crop Science (Suwon city, Korea) has been managed for studying of fertilization and composting impact on paddy soil fertility since 1954. The objective of this research was to evaluate soil quality through dehydrogenase analysis in long-term paddy soil treatment plots, such as control, N fertilization (N), NPK fertilization (NPK), and rice straw compost with NPK (CNPK). Dehydrogenase-producing bacterial population developing red-colored triphenyl formazan (TPF) was highly correlated to the dehydrogenase activity in rice paddy soils sampled prior to waterlog. The dehydrogenase-producing bacterial population and dehydrogenase activity was comparatively high in plots of NPK, and CNPK, which organic matter content was relatively high.

탈수소효소(Dehydrogenase)생성균과 탈수소효소활성의 논토양 건전성평가 생물지표로서의 기능을 평가하고자, 동일 비료 장기연용 논토양의 무처리구, 질소시용구 (N), 화학비료시용구 (NPK), 그리고 퇴비와 화학비료 혼합시용구 (CNPK)를 대상으로 담수전에 시료를 채취하여 탈수소효소를 분비하는 세균과 Bacillus 그리고 탈수소효소활성을 조사하였다. 논토양의 탈수소효소활성은 유기물함량이 비교적 높고 유효인산 많은 화학비료시용구(NPK) 및 퇴비와 화학비료 혼합시용구(CNPK)에서 높은 경향이었다. 토양의 탈수소효소생성균 밀도와 탈수소효소활성간에는 유의성이 높은 정의 상관관계를 보였다.

Keywords

References

  1. Beyer, L., K. Sieling, and K. Pingpank. 1999. The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. BioI. Fertil. Soils. 28:156-161
  2. Camina, F., C. Trasar-Cepeda, F. Gil-Sotres, and C. Leiros. 1998. Measurement of dehydrogenase activity in acid soils rich in organic matter. Soil BioI. Biochem. 30: 1005-1011 https://doi.org/10.1016/S0038-0717(98)00010-8
  3. Ceccanti, B., B. Pezzarossa, F.J. Gallardo-Lancho, and G. Masciandaro. 1994. Bio-tests as markers of soil utilization and fertility. GeomicrobioI. J. 11:309-316
  4. de la Paz Jimenez, M., A. M. de la Horra, L. Pruzzo, and R. M. Palma. 2002. Soil quality: a new index based on microbiological and biochemical parameters. BioI. Fertil. Soils. 35:302-306 https://doi.org/10.1007/s00374-002-0450-z
  5. Kirk, J. L., L. A. Beaudette, M. Hart, P. Moutoglis, J. N. Klironomos, H. Lee, J. T. Trevors. 2004. Methods of studying soil microbial diversity. J. microbioI. Methods. 58:169-188 https://doi.org/10.1016/j.mimet.2004.04.006
  6. Nielsen, M. N., and A. Winding. 2002. Microorganisms as indicators of soil health. p 47-48. Ministry of the environment. National environmental research institute. Denmark
  7. Parham, J. A., S. P. Deng, W. R. Raun, and G. V. Johnson. 2002. Long-term cattle manure application in soil. 1. Effect on soil phosphorus levels, microbial biomass C, and dehydrogenase and phosphatase activities. BioI. Fertil. Soils. 35:328-337 https://doi.org/10.1007/s00374-002-0476-2
  8. Praveen-Kumar, J., and C. Tarafdar. 2003. 2,3,5-Triphenyltetrazolium chloride (TTC) as electron acceptor of culturable soil bacteria, fungi and actinomycetes. BioI. FertiI. Soils. 38:186-189 https://doi.org/10.1007/s00374-003-0600-y
  9. Quilchano, C., and T. Marmon. 2002. Dehydrogenase activity in Mediterranean forest soils. Biol. Fertil. Soils. 35:102-107 https://doi.org/10.1007/s00374-002-0446-8
  10. Ross, D. J. 1970. Effects of storage on dehydrogenase activities of soils. Soil Biol. Biochem. 2:55-61 https://doi.org/10.1016/0038-0717(70)90026-X
  11. Ross, D. J. 1971. Some factors influencing the estimation of dehydrogenase activities of some soils under pasture. Soil BioI. Biochem.3:97-110 https://doi.org/10.1016/0038-0717(71)90002-2
  12. Saviozzi, A., P. Bufalino, R. Levi-Minzi, and R. Riffaldi. 2002. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. BioI. Fertil. Soils. 35 :96-101 https://doi.org/10.1007/s00374-002-0445-9
  13. Suh, J. S., H. J. Noh, and S. I. Choi. 2006. Indole acetic acid production of rice paddy soils. J. Korean Soc. Soil Sci. Fert. 39:386-391
  14. Sukul, P. 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues. Soil Biol. Biochem. 38:320-326 https://doi.org/10.1016/j.soilbio.2005.05.009