Long-term Impact of Single Rice Cropping System on SOC Dynamics

동일비료장기연용 논에서 토양유기탄소의 변동

  • Jung, Won-Kyo (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Sun-Kwan (National Institute of Agricultural Science and Technology, RDA) ;
  • Yeon, Byung-Yul (National Institute of Crop Science, RDA) ;
  • Noh, Jae-Seung (National Institute of Agricultural Science and Technology, RDA)
  • Received : 2007.05.18
  • Accepted : 2007.07.20
  • Published : 2007.08.28

Abstract

Global warming and climate changes have been major issues for decades andvarious researches have reported their impact on our environment. According to recent researches, increased carbon dioxide ($CO_2$) concentration in the atmosphere is considered as a dominant contributor to global climate changes and thus numerous researches were conducted to control $CO_2$ concentration in the atmosphere. Soil management practices, such as reducing tillage intensity, returning plant residues, and enhancing cropping system have recommended for restoring organic carbon into the soils effectively. However, few studies on soil carbon sequestration have reported for Korean paddy soils. Therefore, evaluation of soil organic carbon (SOC) dynamics in the long-term single rice cropping system is essential in order to find out potential capacity of paddy field as a carbon sink source. The objective of this research was to evaluate SOC dynamics on the long-term single rice cropping system. Research was conducted in the research farm at National Institute of Agricultural Science and Technology, Rural Development Administration, Suwon. Long-term phosphorus and potassium fertilization and lime application didn't significantly affect on SOC compared to controls. We found that SOC contents were increased continually at the long-term composting plots with enhanced rate of carbon storage. In conclusion, continuous incorporation of plant residues (i.e., composting) is recommended to effectively sequester soil carbon for Korean paddy soils. This result implies that continuous composting in a paddy field may contributenot only for increasing SOC in the soils but also for mitigating global warming through reducing carbon dioxide emission into atmosphere. Therefore, we recommend that a strategy or policy measures to encourage farmers to return plant residues continuously for mitigation of global warming as well as soil fertility is being developed.

이산화탄소 등 온실가스의 농도 증가로 인한 지구온난화 에 따른 기후의 변화 및 환경적 영향이 증가하고 있으며 토양내 유기탄소의 축적을 통해 대기 중 이산화탄소등 온실 가스의 감축을 효과적으로 제어할 수 있는 방법들이 연구되어 보고되고 있으나, 우리나라의 논의 경우에는 토양유기탄소의 토양 축적에 관한 연구가 매우 적게 보고되고 있다. 따라서 우리나라 주요 경지 이용형태인 논에 대해서도 토양중 탄소를 축적할 수 있는 토양관리 방법의 연구가 매우 필요하게 되었다. 본 연구는 농촌진흥청 농업과학기술원 동일비료 및 개량제 처리 장기시험 포장에서 퇴비, NPK 비료, 석회, 및 규산등의 처리구별 토양유기탄소의 동태를 분석하였다. 연구결과 인산, 칼리 및 석회의 시용은 장기간 시용한 이후에 처리한 구에서 미처리구에서 보다 토양유기탄소의 함량이 높게 나타났다. 한편 퇴비 시용구의 경우 퇴비 미시용구에서 보다 퇴비 시용구에서 토양유기탄소의 함량이 지속적으로 증가하는 것으로 나타났으며 시간이 지날수록 유기탄소축적비율도 증가하는 것으로 나타났다. 결론적으로 단일 논 작부체계하에서 장기간 지속적인 퇴비의 시용 결과 토양 중 유기탄소의 효과적인 축적이 이루어 졌다. 따라서 우리나라 논에서 중 유기탄소의 축적을 위하여 퇴비의 지속적인 시용을 제안하고자 한다.

Keywords

References

  1. Bauer, A., and A.L. Black. 1994. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci. Soc. Am. J. 58:185-193 https://doi.org/10.2136/sssaj1994.03615995005800010027x
  2. Follett, R.F. 2001. Soil management concepts and carbon sequestration in cropland soils. Soil Tillage Res. 61:77 92 https://doi.org/10.1016/S0167-1987(01)00180-5
  3. Franzluebbers, A, J., and M.A. Arshad. 1996. Soil organicmatter pools during early adoption of conservation tillage in northwestern Canada. Soil Sci. Soc. Am. J. 60:1422 1427 https://doi.org/10.2136/sssaj1996.03615995006000050019x
  4. Intergovernmental Panel on Climate Change (IPCC). 1996. Climate change 1995. Cambridge Univ. Press, New York
  5. IPCC. 2007. Climate change. Fourth Assessment Rep. Intergovernmental Panel on Climate Change, WMO, Geneva, Switzerland
  6. Jung, Won Kyo. 2007. Storing carbon in paddy land. Korean J. Soil Sci. Fert. 40:83-84
  7. Lal, R. 1997. Residue management, conservation tillage and soil restorationfor mitigating greenhouse effect by $CO_{2} $-enrichment. Soil Tillage Res. 43:81107
  8. Lal, R. 2007. Soil Science and the Carbon Civilization. Soil Sci. Soc. Am. J. 71:1425 14-37
  9. Lal, R. J. Kimble, and R. Follett. 1997. Soil quality management for carbon sequestration. p. 18. In R. Lal et al. (ed.) Soil properties and their management for carbon sequestration. United States Department of Agriculture, Natural Resources Conservation Services, National Soil Survey Center, Lincoln, NE
  10. Lal, R., J. M. Kimble, R.F. Follett, and C.V. Cole. 1998. The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Sleeping Bear Press, Chelsea, MI
  11. Mann, L., V. Tolbert, and J. Cushman. 2002. Potential environmental effects of com (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric. Ecosyst. Environ. 89:149 166 https://doi.org/10.1016/S0167-8809(01)00166-9
  12. Marland, G., K. Fruit, and R. Sedjo. 2001. Accounting for sequestered carbon: The question of permanence. Environ. Sci. Policy 4:259 268 https://doi.org/10.1016/S1462-9011(01)00038-7
  13. Paustian, K., J. Six, E.T. Elliott, and H.W. Hunt. 2000. Management options for reducing C02 emissions from agricultural soils. Biogeochemistry 48:147-163 https://doi.org/10.1023/A:1006271331703
  14. Sa, Joa -o Carlos de M., Carlos C. Cerci, Warren A. Dick, Rattan Lal, Solismar P. Venske Filho, Marisa C. Piccolo, and Brigitte E. Feigl. 2001. Organic Matter Dynamics and Carbon Sequestration Rates for a Tillage Chronosequence in a Brazilian Oxisol. Soil Sci. Soc. Am. J. 65:1486 1499 https://doi.org/10.2136/sssaj2001.6551486x
  15. Sampson, R.N., and R.J. Scholes. 2000. Additional human-induced activities Article 3.4. p. 181-281. In R.T. Watson et al. (ed.) Land use, land-use change, and forestry: A special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York
  16. Uri, N.D. 2001. Conservation practices in US agriculture and their impact on carbon sequestration. Environ. Monit. Assess. 70:323 344 https://doi.org/10.1023/A:1010735510641
  17. West, T.O., and W.M. Post. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 66:1930 1946 https://doi.org/10.2136/sssaj2002.1930