토양 중 중금속 생물유효도 평가방법 - 총설

Assessment Techniques of Heavy Metal Bioavailability in Soil - A critical Review

  • Kim, Kwon-Rae (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Owens, Gary (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Naidu, Ravi (Centre for Environmental Risk Assessment and Remediation, University of South Australia) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, University of Seoul)
  • 투고 : 2007.05.20
  • 심사 : 2007.08.11
  • 발행 : 2007.08.28

초록

오늘날 중금속으로 오염된 토양의 위해도 평가 및 오염토양 복원을 위한 기술의 적용에 있어서 점차 중금속의 생물유효도(bioavailability)가 총함량보다 중요하게 생각되고 있다. 그 결과 많은 연구자들은 토양과 토양수 내의 생물에 유효한 중금속의 함량을 조사함과 더불어 이 유효도에 영향을 미치는 주요 토양환경인자를 연구하고 있다. 따라서 본 총설은 일반적으로 유효도 평가에 이용되는 기존의 여러 방법들을 비교평가하고 중금속 유효도의 중요성을 이에 영향을 미치는 토양 인자와 함께기술하였다. 현재까지 다양한 유효도 측정 방법이 개발되어 많은 연구에 적용되고 있는데, 이에는 화학적 침출 방법 (chemical based extraction)과 이온 선택성 전극 (ion selective electrode, ISE) 및 확산구배막(diffusive gradient in the thin film, DGT)을 이용한 중금속 화학종 분리방법 등을 들 수 있다. 그러나 이와 같이 개발된 다양한 기술이 유효도 측정에 있어서 괄목할 만한 성과를 내고 있음에도 아직 국제적으로 인증되고 있는 기술이 있는 것은 아니다. 게다가 토양 중 중금속의 유효도는 토양의 종류 및 특성 그리고 측정 대상인 중금속의 종류에 따라 매우 다양한 양상을 보여준다. 토양 중 중금속의 유효도 변화는 주로 토양과 토양수 사이에서 일어나는 이온교환 반응을 통한 중금속 흡착(adsorption)과 탈착(desorption)에 의하여 일어나며 이 반응은 토양 pH, 유기물, 토양수 중 유기탄소(dissolved organic carbon, DOC), 유기산(low-molecular weight organic acids, LMWOAs) 및 주요 양이온과 같은 토양환경인자의 변화에 영향을 받는다. 예를들어 토양 pH의 증가는 탈수소화(deprotonation) 작용을 통해서 토양표면의 중금속 흡착능력을 높여 결과적으로 유효도를 감소시킨다. 토양중 유기물은 중금속 유효도를 감소시킴과 동시에 유기탄소 및 유기산의 원천으로서 유효도를 증가시키기도 한다. 즉, 유기물은 주로 음으로 하전된 표면을 가지고 있어 중금속을 고상으로 흡착시켜 유효도를 감소시킨다. 반면에 유기물에서 녹아 나온 토양수중 유기탄소 및 유기산은 강한 킬레이트(chelate)로서 토양표면으로부터 중금속을 떨어져 나오게 하여 유효한 중금속 함량을 높여준다. 이와 같은 중금속 이온과 토양인자 사이의 상호반응은 토양의 종류 및 중금속의 종류에 따라 매우 다양하다.

The concept of metal bioavailability, rather than total metal in soils, is increasingly becoming important for a thorough understanding of risk assessment and remediation. This is because bioavailable metals generally represented by the labile or soluble metal components existing as either free ions or soluble complexed ions are likely to be accessible to receptor organismsrather than heavy metals tightly bound on soil surface. Consequently, many researchers have investigated the bioavailability of metals in both soil and solution phases together with the key soil properties influencing bioavailability. In order to study bioavailability changes various techniques have been developed including chemical based extraction (weak salt solution extraction, chelate extraction, etc.) and speciation of metals using devices such as ion selective electrode (ISE) and diffusive gradient in the thin film (DGT). Changes in soil metal bioavailability typically occur through adsorption/desorption reactions of metal ions exchanged between soil solution and soil binding sites in response to changes in environment factors such as soil pH, organic matter (OM), dissolved organic carbon (DOC), low-molecular weight organic acids (LMWOAs), and index cations. Increasesin soil pH result in decreases in metal bioavailability through adsorption of metal ions on deprotonated binding sites. Organic matter may also decrease metal bioavailability by providing more negatively charged binding sites, and metal bioavailability can also be decreases as concentrations of DOC and LMWOAs increase as these both form strong chelate complexeswith metal ions in soil solution. The interaction of metal ions with these soil properties also varies depending on the soil and metal type.

키워드

참고문헌

  1. Adams, F. 1974. Soil solution. p. 441-481. In E.W. Carson (ed.) The plant root and its environment. Charlottesville, VA: Univ. Press of Virginia
  2. Adriano, D.C., W.W. Wenzel, J Vangronsveld, and N.S. Bolan. 2004. Role of assisted natural remediation in environmental cleanup. Geoderma 122(2-4 SPEC IIS): 121-142 https://doi.org/10.1016/j.geoderma.2004.01.003
  3. Alloway, B. J. 1990. Soil processes and the behaviour of metals. p. 7-27. In B. J. Alloway (ed.) Heavy metals in soils. New York, Blackie and Sons
  4. Almas, A.R., M.B. McBride, and B.R. Singh. 2000. Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Science 165:250-259 https://doi.org/10.1097/00010694-200003000-00007
  5. Beckett, P.H.T. 1989. The use of extractant in studies on trace metals in soils, sewage sludges, and sludge-treated soils. Adv. Soil Sci. 9:143-176
  6. Benjamin, M.M., and J.O. Leckie. 1981. Conceptual model for metal-ligand-surface interactions during adsorption. Environ. Sci. Techol. 15: 1050-1057 https://doi.org/10.1021/es00091a003
  7. Bermond, A, I. Yousfi, and J.P. Ghestem. 1998. Kinetic approach to the chemical speciation of trace metals in soils. Analyst 123:785-789 https://doi.org/10.1039/a707776i
  8. Bingham, F.T., G. Sposito, and J.E. Strong. 1984. Effect of chloride on the availability of cadmium. J. Enviom. Qual. 13(1):71-74
  9. Blaser, P. 1994. The role of natural organic matter in the dynamics of metals in forest soils. p. 943-960. In N. Senesi, and T.M. Miano (eds.) Humic substances in the global environment and implications on human health. Amsterdam, Elsevier Science B.V.
  10. Blaylock, M.J, D.E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B.D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Tech. 31(3):860-865 https://doi.org/10.1021/es960552a
  11. Boekhold, A.E., E.J.M. Temminghoff, and S.E.A.T.M. Vanderzee. 1993. Influence of electrolyte composition and pH on cadmium sorption by an acid sandy soil. J. Soil Sci. 44:85-96 https://doi.org/10.1111/j.1365-2389.1993.tb00436.x
  12. Buchter, B., B. Davidoff, M.C Amacher, C. Hinz, I.K. Iskandar, and H.M. Selim. 1989. Phosphorus dynamics during pedogenesis on serpentinite. Soil Sci. 148:370-379 https://doi.org/10.1097/00010694-198911000-00008
  13. Cabrera, D., S.D. Young, and D.L. Rowell. 1988. The toxicity of cadmium to barley plants as affected by complex formation with humic acid. Plant and Soil 105:195-204 https://doi.org/10.1007/BF02376783
  14. Campbell, P.G.C. 1995. Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In A. Tessier, and D.R. Tumer (eds.) Metal speciation and bioavailability in aquatic systems. New York, John Wiley & Sons
  15. Cances, B., M. Ponthieu, M. Castres-Rouelle, E. Aubry, and M.F. Benedetti. 2003. Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma 113:341-355 https://doi.org/10.1016/S0016-7061(02)00369-5
  16. Chen, Y., Z. Shen, and X. Li. 2004. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry 19(10):1553-1565 https://doi.org/10.1016/j.apgeochem.2004.02.003
  17. Christensen, J, B., and T.H. Christensen. 1999. Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ. Sci. Tech. 33(21):3857-3863 https://doi.org/10.1021/es981105t
  18. Christensen, T.H., and P.M. Huang. 1999. Solid phase cadmium and the reactions of aqueous cadmium with soil surfaces. p. 65-96. In MJ. McLaughlin, and B.R. Singh (eds.) Cadmium in soils and plants. Dordrecht, The Netherlands, Kluwer Academic Publishers
  19. Cieslinski, G., K.C.J. Van Rees, A.M. Szmigielska, G.S.R. Krishnamurti, and P.M. Huang. 1998. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and soil 203:109-117 https://doi.org/10.1023/A:1004325817420
  20. Drever, J.l., and L.L. Stillings. 1977. The role of organicacids in mineral weathering. Colloids Surf. A 120:167-181 https://doi.org/10.1016/S0927-7757(96)03720-X
  21. Feng, M-H., X-Q. Shan, S. Zhang, and B. Wen. 2005. A comparison of the rhizosphere-based method with DTPA, EDTA, $CaCl_{2}$, and $NaNO_{3}$ extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 137(2):231-240 https://doi.org/10.1016/j.envpol.2005.02.003
  22. Fitch, A., and P.A. Helmke. 1989. Donnan equilibrium/graphite furnace atomic absorption estimates of soil extract complexation capacities. Anal Chem. 61(11):1295-1298 https://doi.org/10.1021/ac00186a023
  23. Fotovat, A., and R. Naidu. 1998. Changes in composition of soil aqueous phase influence chemistry of indigenous heavy metals in alkaline soils and acidic soils. Geoderma 84:213-234 https://doi.org/10.1016/S0016-7061(97)00130-4
  24. Fox, T.R. 1995. The influence of low-molecular-weight organic acids on properties and processes in forest soils. p. 43-62. In W.W. McFee, and J.M. Kelly (eds.) Carbon forms and functions in forest soils. Madison,Soil Science Society of America
  25. Fox, T.R., and N.B. Comerford. 1990. Low-Molecular-Weight organic acids in selected forest soils of the south eastern USA. Soil Sci. Soc. Am. J. 54:1139-1144 https://doi.org/10.2136/sssaj1990.03615995005400040037x
  26. Furrer, G., and W. Stumm. 1986. The coordination chemistry of weathering: I. Dissolution kinetics of d-$Al_{2}O_{3}$and BeO. Geochim. Cosmochim. Acta 50:1847-1860 https://doi.org/10.1016/0016-7037(86)90243-7
  27. Gao, Y., J. He, W. Ling, H. Hu, and F. Liu. 2003. Effects of organic acids on copper and cadmium desorption from contaminated soils. Environ. mternationaI 29(5):613-618.
  28. Giesler, R., U.S. Lundstrom, and H. Grip. 1996. Comparison of soil solution chemistry assessment using zero-tension lysimeters or centrifugation. Eur. J. Soil Sci. 47:395-405 https://doi.org/10.1111/j.1365-2389.1996.tb01413.x
  29. Gramss, G., K.D. Voigt, F. Bublitz, and H. Bergmann. 2003. Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments. J. Basic Microbial 43(6):483-498 https://doi.org/10.1002/jobm.200310251
  30. Gray, C.W., R.G. McLaren, A.H.C. Roberts, and L.M. Condron. 1999. Cadmium phytoavailability in some New Zealand soils. Aust. J. Soil Res. 37:461-477 https://doi.org/10.1071/S98070
  31. Grinsted, MJ., MJ. Redley, R.E. White, and P.R. Nye. 1982. Plant induced changes in the rhizosphere of rape (Brassica napus var. Emerald) seedlings. I. Change and the increase in P concentration in the soil solution. New Phytologist 91:19-29 https://doi.org/10.1111/j.1469-8137.1982.tb03289.x
  32. Grossman, J., and P. Udluft. 1991. The extraction of soil water by the suction-cup method: a review. J. Soil Sci. 42:83-93 https://doi.org/10.1111/j.1365-2389.1991.tb00093.x
  33. Gupta, S.K., and C. Aten. 1993. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. J. Environ. Anal Chem. 51:25-46 https://doi.org/10.1080/03067319308027609
  34. Hammer, D., and A Keller. 2002. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. Environ. Qual. 31:1561-1569 https://doi.org/10.2134/jeq2002.1561
  35. Hamon, R.E., and J.M. McLaughlin. 1999. Use of the hyperaccumulator Thlaspi caerulescens for bioavailable contaminant stripping. p. 908-909. In W.W. Wenzel (ed.)Proc. 5th Intern. Conf. Biogeochemistry of Trace Elements-ICOBTE. Vienna
  36. Hamon, R. E., J. Wundke, M. J. McLaughlin, and R. Naidu. 1997. Availability of zinc and cadmium to different plant species. Aust. J. Soil Res. 35:1267-1277 https://doi.org/10.1071/S97052
  37. Harter, R.D., and R. Naidu. 2001. An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Sci. Soc. Am. J. 65:597-612 https://doi.org/10.2136/sssaj2001.653597x
  38. He, Q.B., and B.R. Singh. 1993. Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. J. Soil Sci. 44:641-650 https://doi.org/10.1111/j.1365-2389.1993.tb02329.x
  39. Hees, P.A, Wv., A. M. T. Andersson, and U.S. Lundstrom. 1996. Separation of organic low molecular weight aluminium complexes in soil solution by liquid chromatography. Chemosphere 33:1951-1966 https://doi.org/10.1016/0045-6535(96)00309-8
  40. Hees, P.A.Wv., U.S. Lundstrom, H. Boren, and B. Allard. 1999. Determination of low molecular weight organic acids in soil solution by HPLC. Talanta 48: 173-179 https://doi.org/10.1016/S0039-9140(98)00236-7
  41. Hees, P.A.Wv., U.S. Lundstrom, and R. Giesler. 2000. Low molecular weight organic acids and their complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:173-200 https://doi.org/10.1016/S0016-7061(98)00140-2
  42. Herbert, B, E., and P.M. Bertsch. 1995. Characterization of dissolved and colloidal organic matter in soil solution: a review. p 63-88. In W.W. McFee, and J.M. Kelly (eds.) Carbon forms and functions in forest soils. Madison, Soil science society of America
  43. Hinsinger, P. 2001. Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. p. 25-40. In G.R. Gobran, W.W. Wenzel, and E. Lombi (eds.) Trace elements in the rhizosphere. Boca Raton: CRC
  44. Hornburg, V., and G. Brummer. 1993. Heavy metals in soils: 1. Experiments on heavy metal mobility. (in German, with English abstract.). A Pflanzenemaehr. Bodenkd 156:467-477 https://doi.org/10.1002/jpln.19931560603
  45. Howard, J.L., and V.W.J. Brink. 1999. Sequential extraction analysis of heavy metals in sediments of variable composition using nitriltriacetic acid to counteract resorption. Environ. Pollut. 106:285-292 https://doi.org/10.1016/S0269-7491(99)00115-3
  46. Huang, P.M., and J. Bethelin. 1995. Environmental impact of soil component interaction. Metals, other inorganics and microbial activities. Florida: CRC press. p. 376-384
  47. Hue, N.V., G.R. Craddock, and F. Adams. 1986. Effect of organic acids on aluminium toxicity in subsoils. Soil Sci. Soc. Am. J. 50:28-34 https://doi.org/10.2136/sssaj1986.03615995005000010006x
  48. Hutchinson, J.J., S.D. Young, S.P. McGrath, H.M. West, C.R. Black, and A.J.M. Baker. 2000. Determining uptake of 'non-labile' soil cadmium by Thlaspi caerulescens using isotopic dilution teclmiques. New Phytol. 146(3):453-460 https://doi.org/10.1046/j.1469-8137.2000.00657.x
  49. Jackson, A.P., and B.J. Alloway. 1991. The bioavailability of cadmium to lettuces and cabbages in soils previously treated with sewage sludges. Plant and Soil 132:179-186 https://doi.org/10.1007/BF00010398
  50. Jones, D.L. 1998. Organic acids in the rhizosphere a critical review. Plant and Soil 205:25-44 https://doi.org/10.1023/A:1004356007312
  51. Knight, B.P., AM. Chaudri, S.P. McGrath, and K.E. Giller. 1998. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers. Environ. Pollu. 99(3):293-298 https://doi.org/10.1016/S0269-7491(98)00021-9
  52. Krislmamurti, G.S.R, and P.M. Huang. 1999. The nature of organic matter of soils with contrasting cadmium phytoavailability. p. 2025. In RS. Swift (ed.) Humic substances down under 9th IHEE meeting. Sept.; Adelaide, Australia
  53. Krishnamurti, G.S.R., P.M. Huang, K.C.J.V. Rees, L.M. Kozak, and H.P.W. Rostad. 1995. A new soil test method for the determination of plant-available cadmium in soils. Commun. Soil Sci. Plant Anal. 26(17&18):2857-2867 https://doi.org/10.1080/00103629509369493
  54. Krishnamurti, G.S.R., and R. Naidu. 2000. Speciation and phytoavailability of cadmium in selected surface soils of South Australia. Austr. J. Soil Res. 38:991-1004 https://doi.org/10.1071/SR99129
  55. Krishnamurti, G.S.R., and R. Naidu. 2003. Solid-solution equilibria of cadmium in soils. Geoderma 113(1-2):17-30. https://doi.org/10.1016/S0016-7061(02)00312-9
  56. Lagerwerff, J, V., and D.L. Brower. 1972. Exchange adsorption of trace quantities of cadmium in soils treated with chlorides of aluminium, calcium and sodium. Soil Sci. Soc. Am. Proceedings 36:734-737
  57. Lundstrom, U.S., and L.O. Ohman. 1990. Dissolution of feldspars in the presence of natural, organic solutes. J Soil Sci. 41:359-369 https://doi.org/10.1111/j.1365-2389.1990.tb00071.x
  58. Manceau, A., M-C. Boisset, G. Sarret, J-L. Hazemann, M. Mench, P. Cambier, and R. Prost. 1996. Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ. Sci. Tech. 30: 1540-1552 https://doi.org/10.1021/es9505154
  59. Manley, E.P., and L. J. Evans. 1986. Dissolution of feldspars by lowmolecular-weight aliphatic and aromatic acids. Soil Sci. 141:106 112 https://doi.org/10.1097/00010694-198602000-00002
  60. Marschner, H. 1995. Plant-soil relationships. In H. Marschner (ed.) Mineral nutrition of higher plants. London, Academic press
  61. McBride, M., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Eur. J. Soil Sci. 48:337-346 https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
  62. McBride, M.B., and J.J. Blasiak. 1979. Zinc and copper solubility as a functionof pH in an acid soil. Soil Sci. Soc. Am. J 43 :866-870 https://doi.org/10.2136/sssaj1979.03615995004300050009x
  63. McKenzie, R.M.1980. The adsorption of lead and other heavy metal ions on oxides of manganese and iron. Austr. J. Soil Res. 18:61-73 https://doi.org/10.1071/SR9800061
  64. McLaughlin, J.M., and E.R.M. Smolders. 1998. Soil-root interface: Physicochemical processes. p. 233-277. In P.M. Huang (ed.) Soil chemistry and ecosystem health. Madison, SSSA
  65. McLaughlin, M.J., N.A. Maier, R.L. Correll, M.K. Smart, L.A. Sparrow, and A. McKay. 1999. Prediction of cadmium concentrations in potato tubers (Solanum tuberosum L.) by preplant soil and irrigation water analyses. Austr. J. Soil Res. 37:191-207 https://doi.org/10.1071/S98031
  66. Naidu, R., R.D. Harter. 1998. Effect of different organic ligandson cadmium sorption by and extractability from soils. Soil Sci. Soc. Am. J. 62:644-650 https://doi.org/10.2136/sssaj1998.03615995006200030014x
  67. Naidu, R., N.S. Bolan, R.S. Kookana, and K.G. Tiller. 1994. Ionicstrength and pH effects on the sorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45:419-429 https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  68. Naidu, R., R.S. Kookana, M.E. Sumner, R.D. Harter, and K.G. Tiller. 1997. Cadmium sorption and transport in variable charge soils: A Review. J. Environ. Qual. 26:602-617 https://doi.org/10.2134/jeq1997.00472425002600030004x
  69. Nakhone, L.N., and S.D. Young. 1993. The significance of (radio-)labile cadmium pools in soil. Environ. Pollut. 82:73-77 https://doi.org/10.1016/0269-7491(93)90164-J
  70. Nolan, A.L., M.J. McLaughlin, and S.D. Mason. 2003. Chemical speciation of Zn, Cd, Cu, and Pb in pore waters of agricultural and contaminated soils using donnan dialysis. Environ. Sci. Tech. 37(1):90-98 https://doi.org/10.1021/es025966k
  71. Nolan, A.L., H. Zhang, and M.J. McLaughlin. 2005. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J. Environ. Qual. 34:496-507 https://doi.org/10.2134/jeq2005.0496
  72. Novozamsky, I., T.H.M. Lexmond, and V.J.G. Houba. 1993. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. J. Environ. Anal. Chem.51:47-58 https://doi.org/10.1080/03067319308027610
  73. O'Connor, G.A. 1988. Use and misuse of the DTPA soil test. J. Environ. Qual. 17:715-718 https://doi.org/10.2134/jeq1988.00472425001700040033x
  74. Oste, L.A, E.J.M. Temminghoff, and W.H.V. Riemsdijk. 2002. Solid-solution partitioning of organic matter in soils as influenced by and increase in pH or Ca concentration. Environ. Sci. Tech. 36:208-214 https://doi.org/10.1021/es0100571
  75. Pohlman, A.A., and J.G. McColl. 1988. Soluble organics from forest litter and their role in metal dissolution. Soil Sci. Soc. Am. J. 52:265-271 https://doi.org/10.2136/sssaj1988.03615995005200010047x
  76. Prueo., A. 1997. Action values for mobile ($NH_4NO_3$) trace elements in soils based on the German national standard DIN 19730. p. 415-423. In R. Prost (ed.)Contaminated soils. Proc. 3rd Int. Conf. on the Biogeochemistry of Trace Elements. Paris: INRA
  77. Qin, F., X-Q. Shan, and B. Wei. 2004. Effects of low-molecularweight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57(4):253-263 https://doi.org/10.1016/j.chemosphere.2004.06.010
  78. Reuter, J. H., and E.M. Purdue. 1977. Importance of heavy metalorganic matter interactions in natural waters. Geochim. Cosmochirn. Acta 41:325-334 https://doi.org/10.1016/0016-7037(77)90240-X
  79. Romkens, P.F.A.M., and J. Dolfing. 1998. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Techol. 32:363-369 https://doi.org/10.1021/es970437f
  80. Salam, A.K., and P.A. Helmke. 1998. The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma 83(3-4):281-291 https://doi.org/10.1016/S0016-7061(98)00004-4
  81. Sauve, S, N. Cook, W.H. Hendershot, and M.B. McBride. 1996. Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ. Pollut. 94:153-157 https://doi.org/10.1016/S0269-7491(96)00081-4
  82. Sauve, S., W.H. Hendershot, and H.E. Allen. 2000a. Solid-solution partitioning of metals in contaminated soils: dependence on pH,total metal burden, and organic matter. Environ. Sci. Tech. 34(7): 1125-1131 https://doi.org/10.1021/es9907764
  83. Sauve, S, M.B. Mcbride, and W.H. Hendershot. 1997. Speciation of lead in contaminated soils. Environ. Pollut. 98(2): 149-155 https://doi.org/10.1016/S0269-7491(97)00139-5
  84. Sauve, S., M.B. McBride, and W.H. Hendershot. 1998. Soil solution speciation of $Pb^{2+}$: effects of organic matter and pH. Soil Sci. So. Am. J. 62(3):618-621 https://doi.org/10.2136/sssaj1998.03615995006200030010x
  85. Sauve, S., W.A. Norvell, M. McBride, and W.H. Hendershot. 2000b. Speciation and complexation of cadmium in extracted soil solutions. Environ. Sci. Tech. 34(2):291-296 https://doi.org/10.1021/es990202z
  86. Schwab, A.P., Y. He, and M.K. Banks. 2005. The influence of organic ligands on the retention of lead in soil. Chemosphere 61(6):856-866 https://doi.org/10.1016/j.chemosphere.2005.04.098
  87. Shan, X.Q., and B. Chen. 1993. Evaluation of sequential extraction for speciationof trace metals in model soil containing natural minerals and humic acid. Anal. Chem. 65:802-807 https://doi.org/10.1021/ac00054a026
  88. Shen, Y.H. 1999. Sorption of natural dissolved organic matter on soil. Chemosphere 38:1505-1515 https://doi.org/10.1016/S0045-6535(98)00371-3
  89. Smolders, E., K. Brans, A. Foldi, and R. Merckx. 1999. Cadmium fixation in soils measured by isotopic dilution. Soil Sci. Soc. Am. J. 63:78-85 https://doi.org/10.2136/sssaj1999.03615995006300010013x
  90. Smolders, K., and J.M. McLaughlin. 1996. Chloride increases Cd uptake in Swiss chard in a resin-buffered nutrient solution. Soil Sci. Soc. Am. J. 60:1443-1447 https://doi.org/10.2136/sssaj1996.03615995006000050022x
  91. Sparks, D.L. 1995. Environmental soil chemistry. San Diego, California: Academic press. p. 81-97
  92. SSSA 1997. Glossary of soil science terms. Madison, Wl
  93. SSSA Stevenson, F.J. 1994. Humus chemistry. Genesis, composition, reactions. New York: John Wiley & Sons
  94. Street, J. J., B.R. Saber, and W.L. Lindsay. 1978. Influence of pH, phosphorus, Cd, sewage sludge and incubation time on the solubility and plant uptake of Cd. J. Enviom. Qual. 7:286-290
  95. Strobel, B.W. 2001. Influence of vegetation on low-molecularweight carboxylic acids in soil solution-a review. Geoderma 99(34):169-198 https://doi.org/10.1016/S0016-7061(00)00102-6
  96. Strobel, B.W., I. Bernhoft, and O.K. Borggaard. 1999. Lowmolecular-weight aliphatic carboxylic acids in soil solutions under different vegetations determined by capillary zone electrophoresis. Plant and Soil 212: 115-121 https://doi.org/10.1023/A:1004637126429
  97. Suter, D., S. Banwart, and W. Stumm. 1991. Dissolution of hydrous iron (Ill) oxides by reductive mechanisms. Langmuir 7:809-813 https://doi.org/10.1021/la00052a033
  98. Symeonides, C, and S.G. McRae. 1977. The assessment of plant available cadmium in soils. J. Enviom. Qual. 6:120-123
  99. Temminghoff, E.J.M., A.C.C. Piette, R.V. Eck, and W.H.V. Riemsdijk. 2000. Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan Membrane Technique. Anal. Chim. Acta 417: 149-157 https://doi.org/10.1016/S0003-2670(00)00935-1
  100. Temminghoff, E.J.M., S.E.A.T.M.Vd. Zee, and F.A.M.D. Haan. 1997. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Tech. 31:1109-1115 https://doi.org/10.1021/es9606236
  101. Tessier, A, P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate tracemetals. Anal. Chem. 51:844-851 https://doi.org/10.1021/ac50043a017
  102. Thurman, E.M. 1985. Organic geochemistry of natural waters. Dordrecht, Nijhoff
  103. Tiller, K.G. 1979. Applications of isotopes on micronutrient studies. IAEA-SM-2350/50. In International Atomic Energy Agency (ed.) Isotopes andradiation in research on soil-plant relationships. Vienna, IAEA: International Atomic Energy Agency
  104. Tiller, K.G., J.L. Honeysett, and M.P.C. De Vries. 1972. Soil zinc and its uptake by plants: I. isotopic exchange equilibria and the application of tracer techniques. Austr. J. Soil Res. 10:151-164 https://doi.org/10.1071/SR9720151
  105. Tiller, K.G., V.K. Nayyar, and P.M. Clayton. 1979. Specific and non-specific sorption of Cd by soil clays as influenced by zinc and calcium. Austr. J. Soil Res. 17:17-28 https://doi.org/10.1071/SR9790017
  106. Turner, D.R. 1995. Metal speciation andbioavailability in aquatic systems. New York: John Wiley & Sons Ltd: Chichester. p 149-203
  107. Unger, M.T., and H.E. Allen. 1988. p. 481-488. In M. Astruc, and J.N. Lester, (eds.) Heavy metals in the hydrological cycle. London: Selper
  108. Weggler, K., M.J. McLaughlin, and R.D. Graham. 2004. Effect of chloride in soil solution on the plant availability of biosolid-borne Cadmium. J. Environ. Qual. 33(2):496-504 https://doi.org/10.2134/jeq2004.0496
  109. Wehrli, B., B. Sulzberger, and W. Stumm. 1989. Redox processes catalyzed by hydrous oxide surfaces. Chem. Geol. 78:167-179 https://doi.org/10.1016/0009-2541(89)90056-9
  110. Weng, L., T.M. Lexmond, A. Wolthoom, E.J.M. Temminghoff, and W.H. Van Riemsdijk 2003. Phytotoxicity and bioavailability of nickel: Chemical speciation and bioaccumulation. Environ. Toxicol. Chem. 22(9):2180-2187 https://doi.org/10.1897/02-116
  111. Weng, L., E.J.M. Temminghoff, S. Lofts, E. Tipping, and W.H. Van Riemsdijk. 2002. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Tech. 36(22):4804-4810 https://doi.org/10.1021/es0200084
  112. Weng, L., E.J.M. Temminghoff, and W.H.V. Riemsdijk. 2001a. Determination of the free ion concentration of trace metals in soil solution using a soil column Donnan membrane technique. Eur. J. Soil Sci. 52:629-639 https://doi.org/10.1046/j.1365-2389.2001.00416.x
  113. Weng, L., E.J.M. Temminghoff, and W.H.V.Riemsdijk. 2001b. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Tech. 35(22):4436-4443 https://doi.org/10.1021/es010085j
  114. Whitten, M.G., and G.S.P. Ritchie. 1991. Calcium chloride extractable cadmium as an estimate of cadmium uptake by subterranean clover. Austr. J. Soil Res. 29:215-221 https://doi.org/10.1071/SR9910215
  115. Wolt, J., and J.G. Graveel. 1986. A rapid method for obtaining soil solution using vacuum displacement. Soil Sci. Soc. Am. J. 50:602-605 https://doi.org/10.2136/sssaj1986.03615995005000030012x
  116. Xue, H.B., S. Jansen, A. Prasch, and L. Sigg. 2001. Nickel Speciation and complexation kinetics in freshwater by ligand exchange and DPCSV. Environ. Sci. Techol. 35:539-546 https://doi.org/10.1021/es0014638
  117. You, S.J., Y. Yin, and H.E. Allen. 1999. Partitioning of organic matter in soils: effects of pH and water/soil ratio. Sci. Total Environ. 227:155-160 https://doi.org/10.1016/S0048-9697(99)00024-8
  118. Zabowski, D. 1989. Limited release of soluble organics from roots during the centrifugal extraction of soil solutions. Soil Sci. Soc. Am. J 53:977-979 https://doi.org/10.2136/sssaj1989.03615995005300030058x
  119. Zhang, H., F. Zhao, B. Sun, W. Davison, and S.P. McGrath. 2001. A new method to measure effective soil solution concentration predicts copper availability to plants. Environ. Sci. Techol. 35:2602-2607 https://doi.org/10.1021/es000268q
  120. Zhu, B., and A.K. Alva. 1993. Distribution of trace metals in some sandy soils under citrus production. Soil Sci. Soc. Am. J. 57:350-355 https://doi.org/10.2136/sssaj1993.03615995005700020011x
  121. Zutic, V., and W. Stumm: 1984. Effect of organic acids and fluoride on the dissolution kinetics of hydrous alumina. A model study using the rotating disc electrode. Geochim. Cosmochim. Acta 48:1493-1503 https://doi.org/10.1016/0016-7037(84)90405-8