Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials

목탄계 건축자재에 의한 포름알데히드 흡착

  • Lee, Oh-Kyu (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Choi, Joon-Weon (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Jo, Tae-Su (Div. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Paik, Ki-Hyon (Dept. of Biomaterial Science & Technology, Environmental Science & Ecological Engineering, College of Life Sciences & and Biotechnology, Korea University)
  • 이오규 (국립산림과학원 화학미생물과) ;
  • 최준원 (국립산림과학원 화학미생물과) ;
  • 조태수 (국립산림과학원 화학미생물과) ;
  • 백기현 (고려대학교 생명과학대학 환경생태공학부 생물재료공학과)
  • Received : 2007.01.23
  • Accepted : 2007.03.06
  • Published : 2007.05.25

Abstract

The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

실내 공기질 향상을 목적으로 사용되는, 목탄과 모르타르 또는 천연 페인트가 혼합된 건축재료에 대한 포름알데히드 제거효과를 분석하기 위하여, 포름알데히드를 소정의 농도로 조절한 밀폐 용기에 이들 목탄계 건축자재를 넣고 일정시간 동안의 처리 과정을 거친 후 잔류 포름알데히드를 DNPH (2,4-Dinitrophenyl hydrazine) 카트리지를 통해 수집하고 HPLC 분석을 통해 잔류농도를 측정하여 목탄건축자재에 의한 포름알데히드 제거성능을 조사하였다. 목탄 및 목탄 바이오 모르타르의 포름알데히드 흡착 실험결과, 두 시료군 모두에서 목탄 5, 10, 15%를 함유한 시료의 단위중량 당 포름알데히드 제거량은 목탄을 함유하지 않은 시료에 비해 3배 이상 높았으며 포름알데히드 제거율은 약 80~90% 이상이었다. 수성 목탄 페인트의 포름알데히드 흡착 실험결과 또한 비슷하여, 목탄 15, 20, 25%를 함유한 시료의 단위중량 당 포름알데히드 제거량은 목탄을 함유하지 않은 시료에 비해 3배 가량 높았으며 포름알데히드 제거율은 90% 이상이었다. 포름알데히드는 목탄 제조 과정 중 목재의 리그노셀룰로스 성분의 구조변화로 인해 형성된 탄소 골격인 그라핀(Graphene)층 표면이나 가장자리에 형성된 흡착형 'O' 또는 'OH'관능기와 결합하여 흡착되는 것으로 판단된다.

Keywords

References

  1. 권성민, 김남훈. 2006. 목재의 탄화기구 해석(I). 목재공학 34(3): 8-14
  2. 김남훈, 황원중, 권성민, 권구중, 이성재. 2006. 제조온도에 따른 목탄의 해부학적 특성. 목재공학 34(4): 1-8
  3. 이오규, 조태수. 2006. 소나무 및 참나무 백탄의 물성과 구리(II) 이온 흡착 효과. 임산 에너지 25(2): 55-63
  4. 조태수, 안병준, 최돈하. 2005. 탄화온도 차이에 의한 목질탄화물의 흡착성 변화. 목재공학 33(3): 45-52
  5. 조태수, 이오규, 안병준, 최준원. 2006. 국산 수종으로 탄화한 목탄의 물성 및 흡착성. 임산 에너지 25(1): 9-17
  6. Arthur D. Little Inc.. 1981. Formaldehyde concentration level control in mobile homes, A report to the HCHO Institute by Arthur D. Little Inc.. Cambridge, MA
  7. Asada, Takashi, S. Ishihara, T. Yamane, A. Toba, A. Yamada, and K. Oikawa. 2002. Science of Bamboo Charcoal: Study on Carbonizing Temperature of Bamboo Charcoal and Removal Capability of Harmful Gases. Journal of Health Science 48: 473-479 https://doi.org/10.1248/jhs.48.473
  8. Boehm, H.P. 1994. Some aspects of the surface chernistry of carbon blacks and other carbons. Carbon 32: 759-769 https://doi.org/10.1016/0008-6223(94)90031-0
  9. Boehm, H.P. 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40: 145-149 https://doi.org/10.1016/S0008-6223(01)00165-8
  10. Eriksson, B., L. Johanssin, and I. Svedung. 1980. Filtration of formaldehyde contaminated indoor air. The Nordest Symposium on Air Pollution Abatement by Filtration and Respiratory Protection, Copenhagen
  11. Figueiredo, J.L. M.F.R. Pereira, M.M.A. Freitas, and J.J.M. Orfao. 1999. Modification of the surface chemistry of activated carbons. Carbon 37: 1379-1389 https://doi.org/10.1016/S0008-6223(98)00333-9
  12. Malpass, G.R.P. and A.J. Motheo. 2003. The Galvanostatic Oxidation of Aldehydes to Acids on Ti/$Ru_{0.3}Ti_{0.7}O_2$ Electrodes Using a Filter-press Cell. Journal of Brazilian Chemical Society 14: 65-70 https://doi.org/10.1590/S0103-50532003000100011
  13. Pulido-Novicio, L., T. Hata, Y. Kurimoto, S. Doi, S. Ishihara, and Y. Imamura. 2001. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 47: 48-57 https://doi.org/10.1007/BF00776645
  14. Rong, H., Z. Ryu, J. Zheng, and Y. Zhang. 2002. Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde, Carbon 40: 2291-2300 https://doi.org/10.1016/S0008-6223(02)00109-4
  15. Sekine, Y. 2002. Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmospheric Environment 36: 5543-5547 https://doi.org/10.1016/S1352-2310(02)00670-2
  16. Tanada, S., N. Kawasaki, T. Nakamura, M. Araki, and M. Isomura. 1999. Removal of Formaldehyde by Activated Carbons Containing Amino Groups. Journal of Colloid and Interface Science 214: 106-108 https://doi.org/10.1006/jcis.1999.6176
  17. U.S. Consumer Product Safety Commission, 1997. An Update on Formaldehyde
  18. Web site, www.whoi.edu/science/MCG/dept/facilities/hinsta_ozone/methane.html
  19. Youssef, A. M., Th. El-Nabarawy, and S. E. Samra. 2004. Sorption properties of chemically-activated carbons. 1. Sorption of cadmium (II) ions. Colloids Surf. A 235: 153-163 https://doi.org/10.1016/j.colsurfa.2003.12.017
  20. Xu, Y. and M. Schell. 1990. Bistability and Oscillations in the Electrocatalyzed Oxidation of Formaldehyde. Journal of Physical Chemistry 94: 7137-7143 https://doi.org/10.1021/j100381a036