리기다소나무의 구조용 접성재 이용기술 개발 - 낙엽송 촉제와의 혼합 구성을 통한 접성재의 향성능 향상 -

김광모*2 · 심국보*2† · 박주성*2 · 김윤섭*2 · 임진아*2 · 여환명*3

Development of Pitch Pine Glued Laminated Timber for Structural Use -
- Improvement of Bending Capacity of Pitch Pine Glulam by Using Domestic Larch Laminars -

Kwang-Mo Kim*2 · Kug-Bo Shim*2† · Joo-Saeng Park*2 · Wun-Sub Kim*2 · Jin-Ah Lim*2 · Hwanmyeong Yeo*3

요 약
주요 조립수중으로 도입 식재된 리기다소나무의 고부가가치 이용을 위한 구조용 접성재 이용 가능성을 검토하고, 이에 적합한 기술을 개발하기 위하여 본 연구를 수행하였다. 국산 리기다소나무 체제목의 기계적응력등급은 대부분 E7에서 E9등급으로 접성재 제조에는 다소 불량한 것으로 나타났다. 반면 단일수중 및 혼합수중 구조용 접성재 제조에 필수적인 리기다소나무 및 낙엽송 판재의 접착성을 평가한 결과 전단점착력, 드포율, 점거 및 삽입박리를 모두 KS기준 이상으로 나타났다. 리기다소나무 단일수중 접성재의 향성능을 측정해본 결과 원강도는 KS의 접성재 강도등급에 따른 향성능 합적기준을 만족한 반면 원단 향성수수는 기준에 다소 못 미치는 결과를 나타내었다. 그러나 낙엽송 촉제와의 혼합구성을 통해 리기다소나무 접성재의 향성능(원강도와 원단성수수)을 20% 향상시킬 수 있으며, 총재 구성방법에 있어서는 판재의 향성수수와 늘고 품질이 우수한 낙엽송 촉제를 외층에 배치하는 방법이 보다 효과적인 것으로 확인되었다. 결론적으로 리기다소나무의 부가가치 증진을 위한 구조용 접성재 이용은 그 가능성이 매우 크다.

*1 검수 2007년 7월 12일, 제재 2007년 8월 6일
*2 국립산림과학원 임산공학부 목재성능과, Div. of Wood Performance, Dept. of Forest Products, Korea Forest Research Institute, Seoul 130-712, Korea
*3 서울대학교 농업생명과학대학 산림과학부, Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University, Seoul 151-921, Korea
† 주저자(corresponding author) : 심국보(e-mail: kbshim@fou.go.kr)
ABSTRACT

This study was carried out to scrutinize possibility of manufacturing pitch pine (*Pinus rigida*) glued laminated timber in order to add values of pitch pine trees. Also, it was investigated to improve bending performance of pitch pine glulam. Pitch pine was imported as one of major plantation species in Korean peninsula. Machine stress rated grades of pitch pine lumber mostly ranged between E7 and E9, which grades were more or less inferior to producing high quality glulam. However, the adhesive properties between pitch pine and pitch pine, and between pitch pine and Japanese larch (*Larix kaempferi* Carr), such as shear bond strength, wood failure rate and delamination rate of bonded layer submerged in cold and boiling water, were higher than Korean Standard criteria. These properties are essential for manufacturing glulam with single species or multiple species. The modulus of rupture (MOR) of pitch pine glulam exceeded the criterion of Korean Standard for glulam strength grade but modulus of elasticity (MOE) was lower than the criterion. On the other hand, the bonding performances (MOR and MOE) were improved 20 percent by mixing with Japanese larch laminar. It is effective to arrange higher quality Japanese larch laminar at the outer layer of glulam for improving bending performances. In conclusion, it is possible to use low quality pitch pine as laminar of structural glulam for adding values of pitch pine.

Keywords: pitch pine, Japanese larch, glulam, MOR, MOE, adhesive properties

1. 서 론

리가디소나무는 송풍이 피해에 대한 내성이 크고 적박지에 조밀하여도 활착이 잘 된다는 정점 때문에 활착지 복구조림을 위하여 1911년에 처음 도입되었다. 그 후 산림녹화를 위한 조림정책을 통해 우리나라 전역의 사방 및 언로림용 수종으로 조림되어 있으며, 산림자원 조성에 크게 기여하였다(배와 이, 2006). 조림 후 30~40년이 지난 벌기래에 도달한 리가디소나무는 조림 당시에 육체조 조림하지 않았기 때문에 간벌, 가지치기 등의 적절한 육림작업이 실시되지 못하여 적정이 작고 육체가 많은 등 육체로서의 이용가치가 낮다.

목재 이용 선진국에서는 길상재와 같은 구조용 공학목재를 계발·이용함으로써 목재의 부가가치를 높이기 위한 연구가 활발히 진행되어 왔다. 특히 최근 세계적으로 이용 가능한 교품질의 원목이 감소하면서 저급 목재를 활용한 공학목재 개발을 위한 연구가 진행되고 있다(Hallstrom and Grenestedt, 1997; Hernandez et al., 1997). 우리나라에서도 지난 1990년대부터 구조용 길상재에 관한 연구를 본격적으로 시작하여 나엽송, 소나무, 잣나무 등 국산 청엽수를 이용한 구조용 길상재 제조 및 이용기술을 개발하였다(심 등, 2005; 이와 김, 2000; 이 등, 2003; Lee et al., 2005). 이러한 연구의 결과로 현재는 비교적 원목이 통적하며, 강도성능과 내구성이 우수한 나엽송이 구조용 길상재 원료로 이용되고 있다.

따라서 본 연구에서는 리가디소나무의 결함을 극복하고 고부가가치제인 구조용 길상재로서 이용하
기 위한 기술을 개발하고자 하였다. 특히 리기다소나무의 결과를 극복하기 위한 방안으로 결성체 단면
을 낮추는 층제와 협력하여 구성하는 방안을 검토하
였다. 이를 통해 먼저 리기다소나무의 접착성을 평
가하고, 적정 접착제 제조조건을 확인하였다. 다음
으로 단면의 수증구성에 따른 현상을 확인함으로
써 적절한 층제배열 방법을 제안하였다.

2. 재료 및 방법

2.1. 공시재료

공시재중으로 리기다소나무(Pinus rigida)와 낙엽
송(Larix kaempferi Carr.)을 사용하였다. 리기다소나무는 수원 국립공원의 단판송 25 cm
이상이고 길이가 3.6 m인 원목 89본을 분양받아 단
면제가 38 x 140 mm인 판재로 생산하기 위하여
제제 후에 간조하였다. 낙엽송은 산림조합 여주목
재용목에서 단면제가 38 x 140 mm인 길이 3.6 m
인 간조된 판재로 총 200개 구입하여 사용하였다.
리기다소나무와 낙엽송 층제의 평균 함수율은 9.9%
이 12%. 기전밀도는 0.51과 0.52 g/cm³이었다.

접착제 제조용 접착제는 삼성화학의 레조날
접착제(Deernol No. 40, Oshika Shinko Co., Ltd.)
를 사용하였다.

2.2. 접선체 제조용 층제의 등급구분

층제의 품질을 평가하기 위하여 동적탄성계수에
의한 기계응력 등급구분을 실시하였다. 동적탄성계
수는 초음파가 층제의 길이방향으로 3.4 m의 거리
를 이동하는 속도와 층제의 기전밀도를 이용하여 식
(1)을 통해 계산하였다. 초음파 전달시간 측정에는
초음파 비파괴 측정장비인 PUNDIT (CNS Farnell)
를 이용하였다. 각각의 층제에 대해서 동적탄성계수
가 구해지면 KS F 3021에 따라 기계응력 등급을 구
분하였다.

\[\text{MOE}_{D} = V^2 \times \rho \]

여기서, \(V \) = 초음파 전달속도,
\(\rho \) = 기전밀도로 각각 의미한다.

2.3. 접착력 및 접착내구성 평가

리기다소나무 및 리기다소나무와 낙엽송 이수종
사이의 접착성을 평가하였다. 접착제로는 레조기를
수지 접착제를 사용하였으며, 접착제 도포량과 압
력 조건은 Table 2와 같다. 접착력 측정을 위하여
KS F 3021에 따라 높은 전단 시험을 수행하고, 전단
강도와 목표율을 측정하였다. 또한 접착내구성 평가
을 위하여 동일 기준을 적용하여 점지 및 삽입 박리
시험을 수행하였다. 점지 및 삽입 시험는 각각 4회
반복하였으며, 각 단계에서의 박리율을 측정하여 기
록하였다.

2.4. 접선체 제조

접선체 제조에 앞서 두께가 34 mm가 되도록 층제
의 넓은 면을 대패가공하였다. 탄선체수 11,000
N/mm²의 접선체 제조를 목표로 하여 동적탄성계수에
의한 기계응력 등급을 기준으로 8개의 층제를 수
명으로 배치하였다. 리기다소나무 단일수종 접선체
(P-type)와 낙엽송과 리기다소나무 층제를 혼합 구
성한 이수종 접선체를 제조하였는데, 이수종 접선체
는 층제 배열방법에 따른 다시 2중류로 구분하였다.
먼저 외층에 각각 2개씩의 낙엽송 층제를 배치하고
내층에 4개의 리기다소나무 층제를 배치하는 방법
(LP-type)과 동적탄성계수를 기준으로 수명에 상관
없이 무작위로 배치하는 방법(RA-type)을 적용하였
다. 접선체 제조 수량은 단일수종 접선체는 3개, 이
수종 접선체는 type 별로 각각 5개의 접선체를 제조
하였다. 제조된 접선체는 폭이 135 mm가 되도록 대
패가공하여, 최종 접선체 치수는 두께 272 mm, 폭
135 mm, 길이는 층제의 길이와 동일한 3.6 m였다.
Table 1. Ratio of laminar grades rated by dynamic MOE (%)

<table>
<thead>
<tr>
<th>Species</th>
<th>Off-grade</th>
<th>E5</th>
<th>E6</th>
<th>E7</th>
<th>E8</th>
<th>E9</th>
<th>E10</th>
<th>E11</th>
<th>E12</th>
<th>E14</th>
<th>E16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch pine</td>
<td>31</td>
<td>7.0</td>
<td>13.2</td>
<td>23.7</td>
<td>189</td>
<td>175</td>
<td>88</td>
<td>48</td>
<td>26</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Japanese larch</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>15.1</td>
<td>223</td>
<td>223</td>
<td>181</td>
<td>10.2</td>
<td>78</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Fig. 1. Ratio of laminar grades rated by dynamic MOE.

2.5. 휨성능평가

접성재의 휨성능을 평가하기 위하여 만능장치 험가(Instron5585, 최대하중 20 ton)를 이용하여 휨 하중 하에서의 과리시험을 수행하고, 휨 탄성계수와 휨강도를 계산하였다. 가략법은 3등분점 4점하중 방식을 적용하였으며, 시간거리는 3.3 m 하중속도로 5 mm/min로 하였다.

3. 결과 및 고찰

3.1. 접성재 제조용 총재의 등급구분

접성 총재에 대한 동적탄성계수에 의한 등급구분 결과는 Table 1과 Fig. 1에 나타났다. 전반적으로 낙엽송(9,600 N/mm²)이 비해 리기타소나무(8,310 N/mm²)의 동적탄성계수가 낮았다. KS F 3021에서는 다른 등급 구성 접성재의 인장과 최저재로 사용 가능한 등급을 낙엽송(수중군 A)은 E12등급 이상, 리기타소나무(수중군 B)는 E11등급 이상으로 규정하고 있는데, 이에 해당하는 총재의 비율은 낙엽송 9.0%, 리기타소나무 7.8%로 두 수중 모두 비 교적 낮게 나타났으며, 최저재 등급이 1등급인 관계(낙엽송 E18등급, 리기타소나무 E16등급)는 없었다.

3.2. 접착력 및 접착내구성

3.2.1. 전단접착력과 목파율

블록 전단 시험에 의한 전단접착력과 목파율 측정 결과는 Table 2에 나타내었다. 비교를 위하여 이전의 연구에서 동일한 접착제를 사용하여 국산 절단재 및 이수종 사이의 접착력을 측정한 결과(심 등, 2005)와 KS F 3021의 목파기준을 함께 제시하였다. 측정 결과 모든 조건에서 KS 기준을 상회하는 결과를 나타냄으로써 리기타소나무를 이용하여 접성재를 제조하여도 접착력에 있어서는 문제가 없는 것으로 확인되었다.
리가다소나무의 구조용 접착재 이용기술 개발

<table>
<thead>
<tr>
<th>Table 2. Shear bond strength and wood failure depend on the species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species*</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>P + L</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KRP</td>
</tr>
<tr>
<td>KP</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>KRP + KP</td>
</tr>
<tr>
<td>KRP + L</td>
</tr>
<tr>
<td>KP + L</td>
</tr>
<tr>
<td>Standard</td>
</tr>
</tbody>
</table>

리가다소나무를 사용한 접착제의 경우 압착압력에 따른 접착력 차이는 미미하였으나, 접착제 도포량이 250 g/m²에서 300 g/m²으로 증가함에 따라 접착력이 10% 이상 증가되었다. 또한 이전 연구에서 언급한 다른 수중의 결과와 비교하였을 때 접착력이 다소 낮게 나타났다. 이는 리가다소나무의 단단한 나무 재질의 특성 및 건축용 목공재가 기인하는 것으로 생각된다. 리가다소나무 접착제에 관한 이전의 연구에서 응용을 포함하는 품질의 단단성 가공이 그렇지 않은 경우에 비해 15% 정도 높다고 보고된 바 있다(국립산림과학원, 2004).

리가다소나무의 난염성 이수층 사이 접착제의 경우는 다른 경우에 비해 낮은 압착압력이 적용되었음에도 불구하고 매우 높은 접착력을 나타내었다. 그 원인은 명확하게 확인되지 않았지만, 본 연구에서는 재료들의 수지 접착제를 이용하여 이수층 간에 KS기준 이상의 접착력을 얻을 수 있음을 확인하는 것으로 연구의 범위를 확장하고 이후 접착제 성능에 관한 연구를 진행하였다. 실제로 접착제 제조시에는 제조 원가의 점검을 고려하여 250 g/m²의 접착제 도포량을 적용하였으며 이에 따른 접착력 감소를 보완하기 위하여 압착압력은 12 kgf/cm²로 하였다.

3.2.2. 접착내구성(침지 및 삽임박리율)

4자에 걸친 침지 및 삽임 저거 과정에서 측정한 박리율 결과는 Table 3과 같이 1% 이내로 KS기준 (5% 이내) 이상이었다. 이상의 결과를 도대로 리가다소나무 접착제 및 리가다소나무와 나무로 만든 관제의 혼합감상이 가능함을 확인할 수 있었다.

3.3. 리가다소나무 접착제 제조 및 성능평가

3.3.1. 리가다소나무 접착제 단면 구성

탄성계수 11,000 N/mm²의 접착제의 제조로 목표로 하여 동적탄성계수를 기준으로 리가다소나무 접착제를 제조한 결과를 Table 4에 나타내었다. 표에는 KS F 3021의 비대칭 다른 등급 구성 접착제 강도 등급 중에서 가장 두께의 접착제 E14등급이 사용되는 11S-31B 등급과 E12등급이 사용되는 10S-28B 등급의 접착제 제조를 위해 요구되는 각 측정의 최소 등
Table 3. Delamination ratio of bonded layer submerged in cold and boiling water, %

<table>
<thead>
<tr>
<th>Testing methods</th>
<th>Species*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold water</td>
<td>P</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P + L</td>
<td>0.03 ± 0.14</td>
<td>0.59 ± 0.61</td>
<td>0.17 ± 0.41</td>
<td>0.13 ± 0.27</td>
<td></td>
</tr>
<tr>
<td>Boiling water</td>
<td>P</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P + L</td>
<td>0.08 ± 0.20</td>
<td>0.28 ± 0.38</td>
<td>0.16 ± 0.34</td>
<td>0.17 ± 0.34</td>
<td></td>
</tr>
</tbody>
</table>

* P : Pitch Pine, L : Japanese larch

Table 4. Lowest laminar grades required for manufacturing 11S-31B and 10S-28B glulam and distribution of dynamic MOE in the cross section of three pitch pine glulams (N/mm²)

<table>
<thead>
<tr>
<th>Laminar grade</th>
<th>11S-31B</th>
<th>10S-28B</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E11</td>
<td>E11</td>
<td>11,741</td>
<td>11,740</td>
<td>11,671</td>
</tr>
<tr>
<td>2</td>
<td>E10</td>
<td>E9</td>
<td>10,894</td>
<td>10,985</td>
<td>11,063</td>
</tr>
<tr>
<td>3</td>
<td>E9</td>
<td>E8</td>
<td>9,742</td>
<td>9,735</td>
<td>9,688</td>
</tr>
<tr>
<td>4</td>
<td>E9</td>
<td>E8</td>
<td>9,186</td>
<td>9,597</td>
<td>9,618</td>
</tr>
<tr>
<td>5</td>
<td>E9</td>
<td>E8</td>
<td>9,179</td>
<td>9,169</td>
<td>9,153</td>
</tr>
<tr>
<td>6</td>
<td>E9</td>
<td>E8</td>
<td>10,888</td>
<td>10,225</td>
<td>10,350</td>
</tr>
<tr>
<td>7</td>
<td>E11</td>
<td>E10</td>
<td>10,772</td>
<td>10,747</td>
<td>10,553</td>
</tr>
<tr>
<td>8</td>
<td>E12</td>
<td>E12</td>
<td>12,404</td>
<td>12,572</td>
<td>13,359</td>
</tr>
</tbody>
</table>

금기준을 함께 나타내었다.

KS에서 요구하는 각 층재의 기계응력 등급과 실제 층질된 층재의 동적탄성계수를 비교하면, 11S-31B 등급의 경우 1에서 5번 층재까지는 KS에 적합한 층 재가 배치되어 있지만 인장측 최외층재 및 중층재로 사용된 층재(7, 8번 층재)의 경우에는 KS기준보다 한 등급 낮은 층재가 배치되었다. 반면에 10S-28B 등급과 비교해 보면, 반대로 7, 8번 층재를 제외하고는 전반적으로 기준보다 1, 2등급 이상 높은 기계응력 등급의 판재가 사용되었다. 이는 연구의 설계 단계에서 KS기준이 제대로 반영되지 못하였기 때문으 로, 이 후 점성계에 관한 연구를 설계하는 데 있어서는 KS기준을 먼저 검토하여야 할 것이다. 본 연구에 서 제조한 리기다소나무 점성계는 KS 강도등급 11S-31B와 10S-28B 중간의 품질을 가지는 것으로 확인되었다.

3.3.2. 리기다소나무 점성계의 성능평가

리기다소나무 점성계의 환 파괴시험을 통해 흡 탁성계수와 흡정도를 측정한 결과를 Table 5에 나타내었다. 표에는 층재의 동적탄성계수를 바탕으로 변형량함수식(식 (2))을 이용하여 점성계의 흡 탁성계수를 예측한 결과(ASTM D3737)와 KS에서 제시한 11S-31B와 10S-28B 등급의 강도시험 합격기준을 함께 나타내었다.

\[E_G = \frac{1}{i} \sum_{i=1}^{n} E_L [I_L + A(d_i)^2] \]

여기서, \(E_G \) : 점성계의 흡 탁성계수,
\(E_L \) : \(i \)번째 층재의 흡 탁성계수,
\(I \) : 전체 보의 단면이차모멘트,
\(n \) : 층재수,
\(I_L \) : 층재의 단면이차모멘트,
\(A \) : \(i \)번째 층재의 융합량 단면적,
\(d_i \) : 점성계와 \(i \)번째 층재 중립차 간의 거리 각각 의미한다.

점성계의 실험과 예측 흡 탁성계수(MOE) 사이에 25% 정도의 큰 차이를 보였는데, 그 원인 및 점성계 흡 탁성계수의 예측 정확성을 높이는 방법에 관하여는 현재 검토 중에 있으며, 다음 기회에 자세히 고찰 하도록 하겠다. 거의 유사한 동적탄성계수를 가지는 층재가 사용되었음에도 불구하고 점성계의 최상능 변하는 매우 크게 나타났다. 보다 균일하고 신뢰할
리거다소나무의 구조용 접성재 이용기술 개발

Table 5. Mechanical properties of pitch pine glulams measured by bending test

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>Average</th>
<th>IIS-31B</th>
<th>IFS-28B</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOE (10^3 N/mm²)</td>
<td>Predicted</td>
<td>11.43</td>
<td>11.49</td>
<td>11.38</td>
<td>11.43</td>
<td>11 (9)*</td>
</tr>
<tr>
<td>Measured</td>
<td>9.24</td>
<td>7.67</td>
<td>8.79</td>
<td>8.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOR (N/mm²)</td>
<td>5017</td>
<td>3231</td>
<td>4200</td>
<td>41.49</td>
<td>31</td>
<td>28</td>
</tr>
</tbody>
</table>

* Presented value should be compared with average, and result of each sample must be over the value in parenthesis (KS F 3921)

Table 6. Distribution of dynamic MOE in the cross section of LP-type mixed species glulams (N/mm²)

<table>
<thead>
<tr>
<th></th>
<th>LP-1</th>
<th>LP-2</th>
<th>LP-3</th>
<th>LP-4</th>
<th>LP-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.20</td>
<td>12.60</td>
<td>12.18</td>
<td>11.80</td>
<td>11.824</td>
</tr>
<tr>
<td>2</td>
<td>11.05</td>
<td>12.01</td>
<td>12.18</td>
<td>13.18</td>
<td>11.124</td>
</tr>
<tr>
<td>6</td>
<td>9.971</td>
<td>9.994</td>
<td>10.003</td>
<td>10.089</td>
<td>10.152</td>
</tr>
<tr>
<td>7</td>
<td>11.041</td>
<td>10.962</td>
<td>10.936</td>
<td>10.908</td>
<td>10.884</td>
</tr>
</tbody>
</table>

*: Pitch pine, : Japanese Larch

Table 7. Distribution of dynamic MOE in the cross section of RA-type mixed species glulams (N/mm²)

<table>
<thead>
<tr>
<th></th>
<th>RA-1</th>
<th>RA-2</th>
<th>RA-3</th>
<th>RA-4</th>
<th>RA-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10.545</td>
<td>10.504</td>
<td>10.451</td>
<td>10.423</td>
<td>10.360</td>
</tr>
<tr>
<td>6</td>
<td>10.559</td>
<td>10.564</td>
<td>10.568</td>
<td>10.595</td>
<td>10.688</td>
</tr>
</tbody>
</table>

*: Pitch pine, : Japanese Larch

수 있는 성능의 접성재를 제조하기 위해서는 총계의 폭질을 정확하게 예측하여 등급을 결정하는 방법에 대한 검토가 요구된다.

KS의 접성재 강도등급에 따른 횡성성 합격기준서 비교하면 환경도(MOR)의 경우 모든 접성재가 KS 기준을 만족하였으나, 휘 탄성계수는 기준에 못 미치는 결과를 나타내었다. KS의 시험 방법에서는 경간이 두께의 18배 이상이 되도록 요구하고 있으나 본 연구에서 사용된 경간은 두께의 약 12배 정도로 전단에 의한 영향이 충분결과에 크게 포함된 것으로 판단된다. 경간 두께의 비율은 접성재의 적합하도록 실험한 경우에 휘 탄성계수의 향상될 것으로 예상되지만, 그 결과가 KS의 합격기준을 만족하지 여부에 대해서는 실제 실험을 통해 확인되어야 한다. 전단에 의한 영향이 크게 작용하였음에도 불구하고 환경도가 KS의 합격기준보다 평균 30% 정도 높게 나타났으므로 리기다소나무의 구조용 접성재 이용 가능성 이 높은 것으로 생각되었다.

3.4. 낙엽송 총재와의 혼합구성을 통한 횡성성 향상

3.4.1. 이수종 접성재 단면 구성

LP와 RA-type의 두 가지 단면구성 방법으로 리기 다소나무와 낙엽송 이수종 접성재의 총재를 배열한 결과를 각각 Table 6과 7에 나타내었다. 리기다소나무 접성재의 제조에 사용되었던 총재와 유사한 동직 탄성계수를 가지는 총재를 배치하도록 노력하였으나, 적당한 품질의 총재가 부족하여 전반적으로 다소 높은 동직탄성계수를 가지는 총재가 배치되었다.

3.4.2. 이수종 접성재의 성능평가

이수종 접성재의 환경도와 휘 탄성계수 측정결과 를 변형단면법에 의한 휘 탄성계수 예측결과와 함께 Table 8에 나타내었다. 이수종 접성재의 횡성능은 리기다소나무만을 사
Table 8. Mechanical properties of mixed species glulams measured by bending test

<table>
<thead>
<tr>
<th></th>
<th>LP-1</th>
<th>LP-2</th>
<th>LP-3</th>
<th>LP-4</th>
<th>LP-5</th>
<th>Average</th>
<th>St_dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOE (10^5 N/mm²)</td>
<td>Predicted</td>
<td>11.65</td>
<td>11.65</td>
<td>11.73</td>
<td>11.65</td>
<td>11.64</td>
<td>11.66</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>9.51</td>
<td>10.59</td>
<td>10.74</td>
<td>9.51</td>
<td>9.74</td>
<td>10.02</td>
</tr>
<tr>
<td>MOR (N/mm²)</td>
<td>47.77</td>
<td>50.87</td>
<td>57.34</td>
<td>49.36</td>
<td>47.83</td>
<td>50.63</td>
<td>3.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RA-1</th>
<th>RA-2</th>
<th>RA-3</th>
<th>RA-4</th>
<th>RA-5</th>
<th>Average</th>
<th>St_dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOE (10^5 N/mm²)</td>
<td>Predicted</td>
<td>12.61</td>
<td>12.58</td>
<td>12.70</td>
<td>12.75</td>
<td>12.84</td>
<td>12.69</td>
</tr>
<tr>
<td></td>
<td>Measured</td>
<td>11.31</td>
<td>9.52</td>
<td>10.59</td>
<td>10.51</td>
<td>11.14</td>
<td>10.61</td>
</tr>
<tr>
<td>MOR (N/mm²)</td>
<td>37.29</td>
<td>50.70</td>
<td>41.85</td>
<td>64.76</td>
<td>56.94</td>
<td>50.31</td>
<td>11.11</td>
</tr>
</tbody>
</table>

Fig. 2. Load-displacement curves of structural glulams.

용하였을 경우에 비해 힘강도와 합 탄성계수 모두 20% 정도의 두려한 향상효과를 나타내었다. Fig. 2에는 실험을 통해 얻은 리기다소나무 합성재와 이수 종 합성재 하중-변형곡선의 예를 함께 나타내었다. 리기다소나무의 경우 대부분 탄성구간에서 하중이 증가함에 따라 변형이 적선적으로 증가하다가 하중 점이 거의 나타나지 않은 상태에서 파괴가 발생하였으나, 이수종 합성재의 경우에는 하중점 이후에 소성구간이 보다 명확하게 나타났다. 이러한 원인은 중재에 존재하는 응력의 정도에 기인하며, 이러한 이유로 이수종 합성재의 힘강도가 리기다소나무 합성재에 비해 향상된 것으로 생각되었다.

유사한 동등탄성계수의 증가가 사용됨에 따라 리기다소나무 합성재와 이수종 합성재의 합성 합성계수는 거의 유사하였음에도 불구하고 실제 합성계수는 큰 차이를 나타내었는데, 이 부분에 대해 해서도 다음 기회에 합성재의 합 탄성계수 예측 정확성을 향상시키는 방법과 함께 자세히 고찰하도록 하겠다.

이수종 합성재의 단면구성 방법에 따른 환성능 차이를 살펴보면, RA-type의 경우 전반적으로 높은 동등탄성계수를 가지는 종재가 사용되어 합 탄성계수가 LP-type에 비해 1,000 N/mm² 정도 높게 예측되었음에도 불구하고 실제 측정 과정 중 높은 합강도와 합 탄성계수의 평균은 거의 유사하였으며, 표준 편차는 오히려 LP-type 합성재가 작게 나타났다. 이는 합성재의 외충에 리기다소나무 층재가 사용되는 경우에 전체적인 합성재의 성능은 품질이 비교적 낮은 리기다소나무 층재에 크게 좌우되기 때문인 것으로 판단되었다.

구조용 합성재와 같은 구조재의 설계값은 주로 평균이 아닌 하한값(예를 들어 5% 하한치)을 기준으.
로 결정되기 때문에 성능의 편차를 줄여야만 부재를 보다 효율적으로 사용할 수 있다. 따라서 낙엽송과 리거다소나무 이수종 접체를 제조하는 데 있어서 두 수종의 접체를 무작위로 배치하는 것보다는 낙엽송 접체를 외층에 배치하는 것이 보다 효과적인 것으로 확인되었다.

이수종 접체의 합성능 측정 결과를 KS의 접체 강도등급에 따른 합성능 합격기준과 비교하면 두 type 모두 188-28B 강도등급의 기준을 만족시키는 것으로 확인되었다. 반면에 118-31B 강도등급의 기준과 비교하면, 횡 탄성계수의 하한값과 횡강도는 기준을 만족하였으나 횡 탄성계수의 평균값은 기준인 11,000 N/mm²에 다소 못 미치는 것으로 나타났다. 이는 앞에서도 언급한 바와 같이 실험방법에서 적절한 테스트를 KS에 제시한 방법에 비해 낮게 적용함으로써 신단력에 의한 영향이 크게 작용하였기 때문인 것으로 생각된다.

4. 결론

리거다소나무의 구조용 접체 이용 가능성을 확인하고, 이에 적합한 기술을 개발하기 위한 본 연구를 통해 얻은 결론은 다음과 같다.

1) 국산 리거다소나무 원목을 제외하여 기계응력 등급을 구분한 결과 대부분 E7에서 E9등급으로 접체 제조에는 다소 불량한 것으로 나타났다.

2) 리거다소나무 판재의 접착성 및 이수종 접체 제조를 위한 리거다소나무와 낙엽송 판재 사이의 접착성을 평가한 결과 전단접착력, 목과율, 치 tuyến 및 삽질 시험 모두 KS기준 이상으로 나타남으로써 접체 제조시에 접착력에 의한 문제는 없을 것으로 확인되었다.

3) 리거다소나무 접체의 합성을 측정해본 결과 횡강도는 KS의 접체 강도등급에 따른 합성능 합격기준을 만족하였다. 횡 탄성계수는 기준에 못 미치는 결과를 나타내었는데 이는 실험방법의 차이에 의한 것으로 판단되며, 확인을 위한 추가실험이 요구되었다.

4) 낙엽송 접체와의 혼합구성을 통해 리거다소나무 접체의 합성능(횡강도와 횡 탄성계수)을 20% 정도 향상시킬 수 있었으며, 접체 구조방법에 있어서는 낙엽송 접체를 외층에 배치하는 방법이 보다 효과적인 것으로 확인되었다.

5) 접체의 횡 탄성계수를 측체의 동작탄성계수로 예측한 결과와 실제 측정을 통해 얻은 횡 탄성계수 사이에는 큰 차이를 보였는데, 그 원인 및 접체 횡 탄성계수의 예측 정확성을 높이는 방법에 관하여 현재 검토 중이며, 다음 기회에 자세히 고찰할 예정이다.

참고 문헌

5. 팽재수, 이기보. 2006. 우리나라의 산림녹화 성공요인 - 가정용 연료재의 대체와 대규모 조립, 국립산업과학원 연구보고 06-17, p. 78.
11. 이훈택, 강대현, 김두진, 이용재, 조재명. 1985. 낙엽송, 리거다소나무 간별재의 1, 2 및 3면 계체용, 목재공학, 13(3), 41-48.