Cytosolic Phospholipase A2 Activity in Neutrophilic Oxidative Stress of Platelet-activating Factor-induced Acute Lung Injury

Platelet-activating Factor에 의한 급성폐손상에서 호중구성 산화성 스트레스에 관여하는 Cytosolic Phospholipase A2 활성도의 변화

  • Kwon, Young Shik (Department of Physiology, School of Medicine, Daegu Catholic University) ;
  • Hyun, Dae Sung (Department of Internal Medicine, School of Medicine, Daegu Catholic University) ;
  • Lee, Young Man (Department of Physiology, School of Medicine, Daegu Catholic University)
  • 권영식 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 현대성 (대구가톨릭대학교 의과대학 내과학교실) ;
  • 이영만 (대구가톨릭대학교 의과대학 생리학교실)
  • Received : 2007.07.09
  • Accepted : 2007.11.15
  • Published : 2007.12.30

Abstract

Background: The present investigation was performed in rats and isolated human neutrophils in order to confirm the presumptive role of the positive feedback loop of cytosolic phospholipase $A_2$ ($cPLA_2$) activation by plateletactivating factor (PAF). Methods: The possible formation of the positive feedback loop of the $cPLA_2$ activation and neutrophilic respiratory burst was investigated in vivo and in vitro by measurement of the parameters denoting acute lung injury. In addition, morphological examinations and electron microscopic cytochemistry were performed for the detection of free radicals in the lung. Results: Five hours after intratracheal instillation of PAF ($5{\mu}g/rat$), the lung leak index, lung myeloperoxidase (MPO) activity, the number of neutrophils and the concentration of cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid were increased by PAF as compared with those of control rats. The NBT assay and cytochrome-c reduction assay revealed an increased neutrophilic respiratory burst in isolated human neutrophils following exposure to PAF. Lung and neutrophilic $cPLA_2$ activity were increased following PAF exposure and exposure to hydrogen peroxide increased $cPLA_2$ activity in the lung. Histologically, inflammatory findings of the lung were observed after PAF treatment. Remarkably, as determined by $CeCl_3$ cytochemical electron microscopy, increased production of hydrogen peroxide was identified in the lung after PAF treatment. Conclusion: PAF mediates acute oxidative lung injury by the activation of $cPLA_2$, which may provoke the generation of free radicals in neutrophils.

연구배경: 급성호흡곤란증후군의 병인론에 관여하는 PAF의 역할이 다양하고 중요하므로 본 연구에서는 PAF의 또 다른 작용의 가능성, 즉 $cPLA_2$의 활성화(retrograde activation of $cPLA_2$ by PAF)의 가능성을 검사하고자 하였다. 즉, $cPLA_2$의 활성화에 따른 염증성 지질분자의 생성이 산소기의 생성과정을 증폭시키고 이 때 생성된 PAF가 역으로 $cPLA_2$를 활성화시키는지를 확인하기 위하여 본 연구는 고안되었다. 방 법: 흰쥐에서 급성폐손상을 유도하기 위하여 $5{\mu}g$의 PAF를 0.5 ml의 0.25% bovine serum albumin 용액과 혼합한 뒤 기도 내로 직접 분무하거나 0.5 ml의 4.5 mM의 과산화수소를 기도 내로 분무하였다. 대조군의 경우는 0.5 ml의 생리적 식염수를 기도 내로 분무하였다. 5 시간 후에 단백누출지수 측정, 폐장의 MPO 활성도 측정, 폐포 세척액 내의 호중구 산정, CINC 측정, NBT 및 cytochrome-c 환원검사를 시행하였다. 또한 폐장 및 호중구에 서의 $cPLA_2$ 활성도의 측정 및 광학현미경과 전자현미경을 이용하여 형태학적 관찰을 시행하였다. 결 과: PAF투여 후 단백누출지수, MPO, BAL내의 호중 구의 수 및 CINC의 농도가 대조군에 비하여 유의하게 증가하였다. NBT및 cytochrome-c환원검사의 결과 PAF는 호중구의 respiratory burst를 현저히 증가시키고, 분리된 사람의 호중구에서도 산소기의 생성을 현저히 증가시켰 다. 동시에 PAF는 분리된 호중구 및 폐장의 $cPLA_2$의 활성도도 증가 시켰다. 폐장 내로 투여한 과산화수소는 폐장의 $cPLA_2$활성도를 대조군에 비하여 현저히 증가시켰다. 결 론: $cPLA_2$의 활성화에 따라 생성된 PAF는 호중구의 산소기 생성을 증가시켜 폐장 내의 산화성스트레스를 유발하고 동시에 이때 생성된 산화기는 $cPLA_2$를 활성화시키며 PAF 또한 $cPLA_2$의 활성도를 증가시켜 PAF가 급성호흡 곤란증후군의 병인론에 관여하는 것으로 생각된다.

Keywords

References

  1. Schaloske RH, Dennis EA. The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 2006;1761:1246-59 https://doi.org/10.1016/j.bbalip.2006.07.011
  2. Pittet JF, Mackersie RC, Martin TR, Matthay MA. Biological markers of acute lung injury: prognostic and pathogenetic significance. Am J Respir Crit Care Med 1997;155:1187-205 https://doi.org/10.1164/ajrccm.155.4.9105054
  3. Pruzanski W, Vadas P. Phospholipase$ A_2$-a mediator between proximal and distal effectors of inflammation. Immunol Today 1991;12:143-6
  4. Harris JG, Flower RJ, Watanabe K, Tsurufuji S, Wolitzky BA, Perretti M. Relative contribution of the selections in the neutrophil recruitment caused by the chemokine cytokine induced neutrophil chemoattractant. Biochem Biophys Res Commun 1996;221:692-6 https://doi.org/10.1006/bbrc.1996.0658
  5. Schuster DP, Kollef MH. Acute respiratory distress syndrome. Dis Mon 1996;42:270-326 https://doi.org/10.1016/S0011-5029(96)90016-4
  6. Henderson LM, Chappell JB, Jones OT. Superoxide generation is inhibited by phospholipase$ A_2$ inhibitors. Role for phospholipase $ A_2$ in the activation of the NADPH oxidase. Biochem J 1989;264:249-55 https://doi.org/10.1042/bj2640249
  7. Dana R, Leto TL, Malech HL, Levy R. Essential requirement of cytosolic phospholipase $ A_2$ for activation of the phagocyte NADPH oxidase. J Biol Chem 1998;273: 441-5 https://doi.org/10.1074/jbc.273.1.441
  8. Rainger GE, Fisher AC, Nash GB. Endothelial-borne platelet-activating factor and interleukin-8 rapidly immobilize rolling neutrophils. Am J Physiol 1997;272: H114-22
  9. Uhlig S, Goggel R, Engel S. Mechanisms of platelet-activating factor (PAF)-mediated responses in the lung. Pharmacol Rep 2005;57S:206-21
  10. Takahashi T, Nishizawa Y, Hato F, Shintaku H, Maeda N, Inaba M, et al. Neutrophil-activating activity and platelet-activating factor synthesis in cytokine-stimulated endothelial cells: reduced activity in growth-arrested cells. Microvasc Res 2007;73:29-34 https://doi.org/10.1016/j.mvr.2006.08.002
  11. Lee YM, Hybertson BM, Cho HG, Terada LS, Cho O, Repine AJ, et al. Platelet-activating factor contributes to acute lung leak in rats given interleukin-1 intratracheally. Am J Physiol Lung Cell Mol Physiol 2000;279:L75-80
  12. Camussi G, Pawlowski I, Tetta C, Roffinello C, Alberton M, Brentjens J, et al. Acute lung inflammation induced in the rabbit by local instillation of 1-0-octadecyl-2-acetyl- sn-glyceryl-3-phosphorylcholine or of native platelet- activating factor. Am J Pathol 1983;112:78-88
  13. Goldblum SE, Wu KM, Jay M. Lung myeloperoxidase as a measure of pulmonary leukostasis in rabbits. J Appl Physiol 1985;59:1978-85 https://doi.org/10.1152/jappl.1985.59.6.1978
  14. Wittwer AJ, Carr LS, Zagorski J, Dolecki GJ, Crippes BA, De Larco JE. High level expression of cytokine-induced neutrophil chemoattractant (CINC) by a metastatic rat cell line: purification and production of blocking antibodies. J Cell Physiol 1993;156:421-7 https://doi.org/10.1002/jcp.1041560226
  15. Prasad K, Kapoor R, Lee P. Purpurogallin, a scavenger of polymorphonuclear leukocyte-derived oxyradicals. Mol Cell Biochem 1994;139:27-32 https://doi.org/10.1007/BF00944200
  16. Haslett C, Guthrie LA, Kopaniak MM, Johnston RB Jr, Henson PM. Modulation of multiple neutrophil function by preparative methods of trace concentrations of bacterial lipopolysaccharide. Am J Pathol 1985;119: 101-10
  17. Botha AJ, Moore FA, Moore EE, Fontes B, Banerjee A, Peterson VM. Postinjury neutrophil priming and activation states: therapeutic challenges. Shock 1995;3:157-66
  18. Katsumata M, Gupta C, Goldman AS. Rapid assay for activity of phospholipase $A_2 $using radioactive substrate. Anal Boichem 1986;154:676-81 https://doi.org/10.1016/0003-2697(86)90046-1
  19. Hobson J, Wright J, Churg A. Histochemical evidence for generation of active oxygen species on the apical surface of cigarette-smoke- exposed tracheal explants. Am J Pathol 1991;139:573-80
  20. Nakos G, Kitsiouli E, Hatzidaki E, Koulouras V, Touqui L, Lekka ME. Phospholipases $A_2 $ and platelet-activating- factor acetylhydrolase in patients with acute respiratory distress syndrome. Crit Care Med 2005;33:772-9 https://doi.org/10.1097/01.CCM.0000158519.80090.74
  21. Schuster DP, Metzler M, Opal S, Lowry S, Balk R, Abraham E, et al. Pafase ARDS Prevention Study Group. Recombinant platelet-activating factor acetylhydrolase to prevent acute respiratory distress syndrome and mortality in severe sepsis: Phase IIb, multicenter, randomized, placebo controlled, clinical trial. Crit Care Med 2003;31:1612-9 https://doi.org/10.1097/01.CCM.0000063267.79824.DB
  22. Prescott SM, McIntyre TM, Zimmerman G. Two of the usual suspects, platelet-activating factor and its receptor, implicated in acute lung injury. J Clin Invest 1999;104:1019-20 https://doi.org/10.1172/JCI8506
  23. Koh Y, Hybertson BM, Jepson EK, Cho OJ, Repine JE. Cytokine-induced neutrophil chemoattractant is necessary for interleukin-1 induced lung leak in rats. J Appl Physiol 1985;79:472-8
  24. Suzuki YJ, Forman HJ, Sevenian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997;22:269-85 https://doi.org/10.1016/S0891-5849(96)00275-4
  25. Repine JE. Scientific perspectives on adult respiratory distress syndrome. Lancet 1992;339:466-9 https://doi.org/10.1016/0140-6736(92)91067-I
  26. Mantovani A, Dejana E. Cytokines as communication signals between leukocytes and endothelial cells. Immunol Today 1989;10:370-5 https://doi.org/10.1016/0167-5699(89)90270-3
  27. Serizawa A, Nakamura S, Suzuki S, Baba S, Nakano M. Involvement of platelet activating factor in cytokine production and neutrophil activation after hepatic ischemia- reperfusion. Hepatology 1996;23:1656-63 https://doi.org/10.1002/hep.510230649
  28. Tamm M, Bihl M, Eickelberg O, Stulz P, Perruchoud AP, Roth M. Hypoxia-induced interleukin-6 and interleukin- 8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol 1998;19: 653-61 https://doi.org/10.1165/ajrcmb.19.4.3058
  29. Anderson BO, Brown JM, Harken AH. Mechanisms of neutrophil-mediated tissue injury. J Surg Res 1991;51: 170-9 https://doi.org/10.1016/0022-4804(91)90090-9
  30. Lee YM, Hybertson BM, Terada LS, Repine AJ, Cho HG, Repine JE. Mepacrine decreases lung leak in rats given interleukin-1 intratracheally. Am J Respir Crit Care Med 1997;155:1624-8 https://doi.org/10.1164/ajrccm.155.5.9154867
  31. Hybertson BM, Lee YM, Cho HG, Cho OJ, Repine JE. Alveolar type II cell abnormalities and peroxide formation in lungs of rats given IL-1 intratracheally.Inflammation 2000;24:289-303 https://doi.org/10.1023/A:1007092529261
  32. Martensson J, Jain A, Frayer W, Meister A. Glutathione metabolism in the lung: inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc Natl Acad Sci U S A 1989;86:5296-300 https://doi.org/10.1073/pnas.86.14.5296
  33. Kim FJ, Moore EE, Moore FA, Biffl WL, Fontes B. Banerjee A. Reperfused gut elaborates PAF that chemoattracts and primes neutrophils. J Surg Res 1995;58: 636-40 https://doi.org/10.1006/jsre.1995.1100
  34. Balsinde J, Dennis EA. Distinct roles in signal transduction for each of the phospholipase $A_2 $enzymes present in P388D1 macrophages. J Biol Chem 1996; 271:6758-65 https://doi.org/10.1074/jbc.271.12.6758
  35. Nakashima S, Suganuma A, Sato M, Tohmatsu T, Nazawa Y. Mechanism of arachidonic acid liberation in platelet-activating factor-stimulated human polymorphonuclear neutrophils. J Immunol 1989;143:1295-302
  36. Sun X, Caplan MS, Hsueh W. Tumor necrosis factor and endotoxin synergistically activate intestinal phospholipase A2 in mice. Role of endogenous platelet activating factor and effect of exogenous platelet activating factor. Gut 1994;35:215-9 https://doi.org/10.1136/gut.35.2.215
  37. Boyer CS, Bannenberg GL, Neve EP, Ryrfeldt A, Moldeus P. Evidence for the activation of the signal-responsive phospholipase A2 by exogenous hydrogen- peroxide. Biochem Pharmacol 1995;50:735-61 https://doi.org/10.1016/0006-2952(95)02011-Z
  38. Chakraborti S, Michael JR. Role of protein kinase C in oxidant-mediated activation of phospholipase A2 in rabbit pulmonary arterial smooth muscle cells. Mol Cell Biochem 1993;122:9-15 https://doi.org/10.1007/BF00925732
  39. Lee YM, Hybertson BM, Cho HG, Repine JE. Platelet activating factor (PAF) induces lung inflammation and leak in rats: hydrogen peroxide production along neutrophil- lung endothelial interfaces. J Lab Clin Med 2002;140:312-9 https://doi.org/10.1067/mlc.2002.128181