Correlation of Nitric Oxide and Corticosteroids Along the Course of Sepsis

패혈증의 경과에 따른 혈중 스테로이드와 Nitric Oxide의 연관성

  • Lee, Keu Sung (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Kim, Young Sun (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Lee, Hyoung No (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Park, Joo Hun (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Oh, Yoon Jung (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Sheen, Seung Soo (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Choi, Young Hwa (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Park, Kwang Joo (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine) ;
  • Hwang, Sung Chul (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine)
  • 이규성 (아주대학교 의과대학 호흡기내과학교실) ;
  • 김영선 (아주대학교 의과대학 호흡기내과학교실) ;
  • 이형노 (아주대학교 의과대학 호흡기내과학교실) ;
  • 박주헌 (아주대학교 의과대학 호흡기내과학교실) ;
  • 오윤정 (아주대학교 의과대학 호흡기내과학교실) ;
  • 신승수 (아주대학교 의과대학 호흡기내과학교실) ;
  • 최영화 (아주대학교 의과대학 호흡기내과학교실) ;
  • 박광주 (아주대학교 의과대학 호흡기내과학교실) ;
  • 황성철 (아주대학교 의과대학 호흡기내과학교실)
  • Received : 2006.11.29
  • Accepted : 2007.03.22
  • Published : 2007.04.30

Abstract

Background: The nitric oxide (NO) released by inducible NO synthase (iNOS) plays an important role in the pathophysiology of sepsis. Corticosteroids also play a role in the hemodynamic and inflammatory reactions in sepsis. Both have been shown to have a relationship theoretically, but their correlation and clinical impacts have rarely been evaluated. Methods: 26 patients with sepsis and 14 healthy controls were enrolled in this study. The initial random plasma total NO and the serum cortisol levels were measured. The same measurements were serially carried out on the $3^{rd}$, $5^{th}$, and $7^{th}$ days. Results: The initial total plasma levels of NO and cortisol were higher in the patients with sepsis than in the healthy controls. The total NO levels were higher in patients with severe sepsis than in the those with mild sepsis. There was a correlation between the total NO and cortisol level throughout the study. Conclusion: In patients with sepsis, the levels of plasma NO and cortisol were well correlated during the first week of sepsis, which suggests an interrelationship. However, the clinical and pathogenetic implications await further evaluation.

연구배경: 패혈증에서 Nitric oxide 스테로이드 호르몬은 혈역학적 변화와 염증반응에 관여하는데 이 두 인자는 서로 상관성이 있는 것으로 알려지고 있다. 하지만 실제 환자에서 서로의 상관성이나 임상적 의의는 연구가 부족한 실정이다. 방법: 패혈증 환자 26예와 대조군 14예를 대상으로 혈중 총 NO와 혈중 코티졸 농도를 측정하였고 이어서 제 3, 5, 7병일에도 연속적으로 측정을 하였다. 결과: 패혈증 환자군에서 초기 혈중 코티졸 및 총 NO 농도는 대조군에 비하여 유의하게 증가하였고 경증 패혈증에 비하여 중증 패혈증 환자군에서 유의하게 높았다. 초기 혈중 총 NO의 농도는 APACHE II 점수, 정맥혈 lactate 농도와 상관성이 있었다. 패혈증의 시간의 경과에 따라 혈중 NO 농도는 제 1병일, 제 5병일, 제 7병일에 혈중 코티졸의 농도와 유의한 상관성이 있었다. 결론: 패혈증 환자들에서 혈중 NO와 코티졸 농도는 증가되어 있었으며, 경과에 따라 서로 유의한 상관성이 지속되었다. 상호작용기전에 대하여는 추가적인 연구가 필요할 것이다.

Keywords

References

  1. Marsh CB, Wewers MD. The pathogenesis of sepsis. Factors that modulate the response to gram-negative bacterial infection. Clin Chest Med 1996;17:183-97 https://doi.org/10.1016/S0272-5231(05)70308-7
  2. Annane D, Bellissant E, Cavaillon JM. Septic shock. Lancet 2005;365:63-78 https://doi.org/10.1016/S0140-6736(04)17667-8
  3. Rees DD. Role of nitric oxide in the vascular dysfunction of septic shock. Biochem Soc Trans 1995;23:1025-9 https://doi.org/10.1042/bst0231025
  4. Kirkeboen KA, Strand OA. The role of nitric oxide in sepsis: an overview. Acta Anaesthesiol Scand 1999;43:275-88 https://doi.org/10.1034/j.1399-6576.1999.430307.x
  5. Vincent JL, Zhang H, Szabo C, Preiser JC. Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 2000;161:1781-5 https://doi.org/10.1164/ajrccm.161.6.9812004
  6. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357:593-615 https://doi.org/10.1042/0264-6021:3570593
  7. Davies MG, Fulton GJ, Hagen PO. Clinical biology of nitric oxide. Br J Surg 1995;82:1598-610 https://doi.org/10.1002/bjs.1800821206
  8. Parratt JR. Nitric oxide in sepsis and endotoxaemia. J Antimicrob Chemother 1998;41S:31-9
  9. Laszlo F, Whittle BJ, Evans SM, Moncada S. Association of microvascular leakage with induction of nitric oxide synthase: effects of nitric oxide synthase inhibitors in various organs. Eur J Pharmacol 1995;283:47-53 https://doi.org/10.1016/0014-2999(95)00281-O
  10. Boyle WA 3rd, Parvathaneni LS, Bourlier V, Sauter C, Laubach VE, Cobb JP. iNOS gene expression modulates microvascular responsiveness in endotoxin-challenged mice. Circ Res 2000;87:E18-24 https://doi.org/10.1161/01.RES.87.7.e18
  11. Hollenberg SM, Cunnion RE, Zimmerberg J. Nitric oxide synthase inhibition reverses arteriolar hyporesponsiveness to catecholamines in septic rats. Am J Physiol 1993;264:660-3
  12. Thijs LG, Groeneveld AB, Hack CE. Multiple organ failure in septic shock. Curr Top Microbiol Immunol 1996;216:209-37
  13. Salvemini D, Korbut R, Anggard E, Vane J. Immediate release of a nitric oxide-like factor from bovine aortic endothelial cells by Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A 1990;87:2593-7 https://doi.org/10.1073/pnas.87.7.2593
  14. Liu S, Adcock IM, Old RW, Barnes PJ, Evans TW. Lipopolysaccharide treatment in vivo induces widespread tissue expression of inducible nitric oxide synthase mRNA. Biochem Biophys Res Commun 1993;196:1208-13 https://doi.org/10.1006/bbrc.1993.2380
  15. Duma D, Silva-Santos JE, Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide in endotoxemic rats. Crit Care Med 2004;32:2304-10 https://doi.org/10.1097/01.CCM.0000145996.57901.D7
  16. Radomski MW, Palmer RM, Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 1990;87:10043-7 https://doi.org/10.1073/pnas.87.24.10043
  17. Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA. Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and L-arginine transport. J Biol Chem 1996;271:23928-37 https://doi.org/10.1074/jbc.271.39.23928
  18. Lee KS, Baek SH, Lee HN, Park JH, Oh YJ, Sheen SS, et al. Significance of corticosteroids and their relationship with other parameters in patients with sepsis. Tuberc Respir Dis 2006;61:356-65 https://doi.org/10.4046/trd.2006.61.4.356
  19. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003;31:1250-6 https://doi.org/10.1097/01.CCM.0000050454.01978.3B
  20. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818-29 https://doi.org/10.1097/00003246-198510000-00009
  21. Kilbourn RG, Traber DL, Szabo C. Nitric oxide and shock. Dis Mon 1997;43:277-348
  22. Ceppi ED, Smith FS, Titheradge MA. Nitric oxide, sepsis and liver metabolism. Biochem Soc Trans 1997;25:929-34 https://doi.org/10.1042/bst0250929
  23. Gomez-Jimenez J, Salgado A, Mourelle M, Martin MC, Segura RM, Peracaula R, et al. L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med 1995;23:253-8 https://doi.org/10.1097/00003246-199502000-00009
  24. Mitaka C, Hirata Y, Yokoyama K, Wakimoto H, Hirokawa M, Nosaka T, et al. Relationships of circulating nitrite/nitrate levels to severity and multiple organ dysfunction syndrome in systemic inflammatory response syndrome. Shock 2003;19: 305-9 https://doi.org/10.1097/00024382-200304000-00002
  25. MacKenzie IM, Garrard CS, Young JD. Indices of nitric oxide synthesis and outcome in critically ill patients. Anaesthesia 2001;56:326-30 https://doi.org/10.1046/j.1365-2044.2001.01920.x
  26. Groeneveld PH, Kwappenberg KM, Langermans JA, Nibbering PH, Curtis L. Nitric oxide (NO) production correlates with renal insufficiency and multiple organ dysfunction syndrome in severe sepsis. Intensive Care Med 1996;22:1197-202 https://doi.org/10.1007/BF01709336
  27. Mariotto S, Menegazzi M, Suzuki H. Biochemical aspects of nitric oxide. Curr Pharm Des 2004;10: 1627-45 https://doi.org/10.2174/1381612043384637
  28. Szabo C, Thiemermann C, Wu CC, Perretti M, Vane JR. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo. Proc Natl Acad Sci U S A 1994;91:271-5 https://doi.org/10.1073/pnas.91.1.271
  29. Rees DD, Cellek S, Palmer RM, Moncada S. Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun 1990;173:541-7 https://doi.org/10.1016/S0006-291X(05)80068-3
  30. Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002;288:862-71 https://doi.org/10.1001/jama.288.7.862
  31. Galigniana MD, Piwien-Pilipuk G, Assreuy J. Inhibition of glucocorticoid receptor binding by nitric oxide. Mol Pharmacol 1999;55:317-23 https://doi.org/10.1124/mol.55.2.317
  32. De Matteo R, May CN. Glucocorticoid-induced renal vasodilatation is mediated by a direct renal action involving nitric oxide. Am J Physiol 1997;273:1972-9 https://doi.org/10.1152/ajpcell.1997.273.6.C1972
  33. Riquelme RA, Sanchez G, Liberona L, Sanhueza EM, Giussani DA, Blanco CE, et al. Nitric oxide plays a role in the regulation of adrenal blood flow and adrenocorticomedullary functions in the llama fetus. J Physiol 2002;544:267-76 https://doi.org/10.1113/jphysiol.2002.018325