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LINDELOFICATION OF FRAMES

MEE KyuNG KHANG

ABSTRACT. We introduce a concept of countably strong inclusions
< and that of <-o-ideals and prove that the subframe S(<) of the
frame oldL of o-ideals is a Lindel6fication of a frame L. We also
deal with conditions for which the converse holds. We show that
any countably approximating regular D(X;) frame has the smallest
countably strong inclusion and any frame which has the smallest
D(X;) Lindel6fication is countably approximating regular D(Ry).

1. Introduction and preliminaries

This section is a collection of basic definitions and results on frames.
For general notions and facts concerning frames, we refer to Johnstone[10].

1.1. Frames.

DEFINITION 1.1. ([3]) A frame is a complete lattice L in which binary
meet distributes over arbitrary join, that is, tA\/ S = \/{z As € S} for
any x in L and any subset S of L.

We will denote the bottom element of a frame L by 0 or 0y, and the
top element by e or ey.

ExamMPpLE 1.2. (1) Every complete chain is a frame.

(2) Every complete Boolean algebra is a frame.

(3) For a topological space X, the open set lattice 2(X) of X under
the inclusion is a frame.

(4) For a topological space X, the regular open set lattice O,.,(X) is
a complete Boolean algebra and hence it is a frame.
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DEFINITION 1.3. A frame homomorphism is a map h : L. — M be-
tween frames L and M Preserving all finitary meets and binary joins.

For any element a of a frame L, the map a A _ : L. — L preserves
arbitraty joins; hence it has a right adjont, which will be denoted by
a — _: L — L. In particular, a — 0 exists for any a in L and we write
a — 0 = a*, called the pseudocomplement of a.

PROPOSITION 1.4. Let L be a frame and a,b in L. Then we have :
1) 0* =e and e* = 0.

2) aNa*=a™* Na* =0.

3) a < a*.

4) If a < b, then a* > b*.

5) (Va,)* = Aa* for any family (a,),e; in L.
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A frame homomorphism A : . — M has the right adjoint which will
be denoted by h* and given by

W(y) = \/{z € L| h(z) < (y)}(y € M).
Then h* has the following properties :
(1) his 1-1 if and only h* o h = idy..
(2) h is onto if and only if h o h* = idy;.

DEFINITION 1.5. A frame homomorphism A : L — M is said to be :
(1) dense if h(a) = 0 implies a = 0.
(2) codense if h(a) = e implies a = e.

1.2. Some Special Frames.

DEFINITION 1.6. ([8])Let L be a frame and a, b in L. We say that a
is rather below b, if there exists ¢ in L such that aAc=0and bV c = e,
equivalently, a* V b = e. In this case, we write a < b.

We note that v < v in Q(X) means uw C v, for a topological space
(X, (X))

PROPOSITION 1.7. Let L be a frame and a, b, x, y in L. Then

(1) 0 <z and xz < e.

(2) a < a if and only if a is complemented.
(3) a < b implies a < b.

(4) If r <a <b<y, then z < y.
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(5) Ifa<bandx <y, thenaNz <bAyandaVz<bVy.
(6) a < b implies b* < a*.

PROPOSITION 1.8. Let L and M be bounded distributive lattices and
f: L — M a bounded lattice homomorphism. Then f preserves <.

DEFINITION 1.9. A frame L is said to be regular if for any a in L,
a=\{beLlb=<a}.

It is clear that a topological space (X, (X)) is regular if and only if
Q(X) is a regular frame.

DEFINITION 1.10. Let L be a complete lattice and a, b in L. We say
that a is way below b and write a < b, if for any subset S of L, b <\/ S
implies a < VE for some finite subset E of S.

ExampLE 1.11. Let (X,Q(X)) be a locally compact space. Then
u < v in Q(X) if and only if there is a compact subset w of X such that
u Cw Co.

In [8], we have the following :

DEFINITION 1.12. A complete lattice L is said to be continuous, if for
any ain L,a=\{zr €L |z < a}.

ProrosiTiON 1.13. If L is a continuous frame, then the relation <
interpolates, i.e., for x < y, there is z in L with © < z < y.

DEFINITION 1.14. Let L be a complete lattice and a, b in L. We say
that a is countably way below b and write a <, b, if for any subset S of
L, b <V S implies a < \/ C for some countable subset C of S.

ExaMPLE 1.15. (1) Let A and B be subsets of a set X. Then A <,
B in the frame p(X) of the power set of X if and only if there is
a countable subset C of X with A C C C B.

(2) In Q(X) of a topological space (X,Q(X)), u <. v if there is a
Lindelof subset w of X with u C w C v. If X is locally Lindelof,
then the converse also holds.

PROPOSITION 1.16. Let L be a frame and a, b, x, y in L. Then
(1) 0 <. a.

(2) a <. b implies a < b.

(3) Ifr <a <. b<y, then x <, y.

(4)

Ifa, <. b foralln € N, then \/ a, <. b.
neN
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(5) If a < b, then a <. b.

DEFINITION 1.17. ([11])A complete lattice L is said to be countably
approximating, if for any z in L, z = \/{a € L | a <. x}.

ExampLE 1.18. (1) A continuous frame L is countably approxi-
mating by (5) of Proposition 1.16.

(2) If a frame is countable, then it is countably approximating.

(3) The frame Q(X) of a locally Lindel6f space (X, £2(X)) is countably
approximating.

2. Lindelofication of a Frame

In this section, we deal with Lindelofications of frames. We define
countably strong inclusions on a frame and study relationship between
Lindeltfications and countably strong inclusions.

2.1. Lindelof Frames. The following definition is a natural general-
ization of compact frames.

DEFINITION 2.1. A frame L is said to be a Lindel6f frame, if for any
subset S of L with \/ .S = e, there is a countable subset C of S such that
\VC=e

REMARK. (1) A topological space (X, (X)) is a Lindel6f space if
and only if 2(X) is a Lindeldf frame.

(2) A frame L is a Lindel6f frame if there is a countable subset B of
L such that for any = in L, x = \/ B’ for some B’ C B. Thus the
regular open set lattice O,¢,(R) of the real line R is a non-spatial
Lindelof frame.

Using the definition of a closed sublocale and codense homomorphism,
we obtain :

PROPOSITION 2.2. A closed sublocale of a Lindel6f frame is a Lindel6f
frame.

ProrosiTiON 2.3. If h : L — M is a codence frame homomorphism
and M is a Lindelof frame, then L is a Lindelof frame.

A 1-1 frame homomorphism is clearly codence and therefore the fol-
lowing is immedate;
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COROLLARY 2.4. If h: L — M is a 1-1 frame homomorphism and M
is a Lindelof frame, then L is a Lindelof frame.

DEFINITION 2.5. A frame L is said to be a D(X;) frame, if for any a
in L and any sequence (b,)ney in Ly aV (A by) = A (aVby,).
neN neN

EXAMPLE 2.6. (1) Suppose 2(X) of a topological space X is closed
under countable intersections, then Q(X) is a D(X;) frame. In
particular, for any topological space X, the topology generated
by the set of all Gs-sets in the space is a D(X;) frame.

(2) Every completely distributive frame is D(®;).

(3) Every complete Boolean algebra is D(X;) and hence atomless
complete Boolean algebra is non-spatial D(Ry).

(4) The regular open set lattice O,.4(R) of the real line R is a non-
spatial Lindelof D(R;) frame. But the open set frame Q(R) of the
real line is not D(Ry).

PROPOSITION 2.7. If x, <y for all n in N in a D(X;) frame L, then
\V z, <y in L.
nenN

Proof. By the assumption, x} Vy = e for all n in N. Since L is D(X;),
(Va,)*Vy=(Az,)) Vy= A (z,*Vy)=e. Thus \ z, <y. O
neN neN neN neN
2.2. Lindelofication of a Frame. In this section, we introduce a con-
cept of countably strong inclusions and using these, we construct Lin-
delofication of frames.

DEFINITION 2.8. A binary relation < on a frame L is said to be a
countably strong inclusion, if it satisfies :

(1) if x <a<b <y, then z<y.

(2) < is closed under finite meets and countable joins.

(3) a<bimplies a < b.

(4) < interpolates.

(5) a<b implies b* < a*.

(6) a=V{xe€eL|xz<a} for any a in L.

REMARK. (1) A binary relation < on a frame with the condition
1) in the above definition satisfies 2) if and only if < satisfies :
(i) e<e; if z <y, and x <ys, then x <y; A ys and
(ii) if x, <y for all n in N, then \/ z, <vy.
neN
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(2) Let X be a set. Then C is a countably strong inclusion on p(X).
By proposition 1.7, we have the following :

PROPOSITION 2.9. If L is a Lindeldf regular D(Xy) frame, then < is
a countably strong inclusion.

EXAMPLE 2.10. (1) p(N) is a Lindelof regular D(R;) frame.
(2) Let X be an uncountable set and p a particular point of X. Define
a topology on X by declaring open any set whose complement

either is countable or includes p. Then Q(X) is a Lindeldf regular
D(y) frame.

We will investigate the relationship between countably strong inclu-
sions and Lindelofication.

DEFINITION 2.11. A Lindelofication of a frame L is a dense, onto
frame homomorphism h : . - M such that M is a Lindelof regular
frame.

Consider a dense onto frame homomorphism A : L — M with the
right adjoint h* : L — M. We define a relation < on L as follows : z <y
if and only if h*(z) < h*(y) for any x, y in L. Then since h is onto,

2 2
h o h* =idy, and hence < C h(<), where h denotes the map h x h.

Using these notions, we have the following:

2
PROPOSITION 2.12. <= h(<)

Proof. Suppose u < v in M and let h(u) = x and h(v) = y. Then
v < h*(y); hence u < h*(y). Thus there exists ¢ in M such that uAt =0
and h*(y) V't = e. Since h is onto, h(h*(z) A t) = h(h*(x)) A h(t) =
x A h(t) = h(u) A h(t) = h(u At) = 0. Since h is dense, h*(x) At = 0.
Thus h*(z) < h*(y); hence z < y. O

The properties of pseudocomplements and dense homomorphisms lead
us the following :

LEMMA 2.13. For a dense onto homomorphism h : M — L, (h*(a))* =
h*(a)* for all a in L.

PROPOSITION 2.14. Suppose that h : M — L is a Lindeldfication of a
frame L and M is a D(Xy) frame. Then the relation < defined as above
is a countably strong inclusion on L.
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In the following, we construct a Lindelofication from a countably
strong inclusion. For this, we study some properties of o-ideals.

We recall that a subset D of a poset L is said to be countably directed,
if every countable subset of D has an upper bound in L.

DEFINITION 2.15. A subset I of a frame L is said to be a o-ideal if
it is a countably directed lower set, equivalently, it is a lower set and
closed under countable joins.

Let oldL denote the set of all o-ideals in L. Then oldL is clearly
closed under arbitrary intersections in the power set lattice (L) of L
and therefore it is a complete lattice.

ExaMPLE 2.16. (1) Let X be an infinite set. Count(X) = {S C
X | S is a countable set } is a o-ideal of p(X). Fin(X) = {F C X |
F is a finite set} is an ideal but not a o-ideal of pX.

(2) If L is a D(N;) frame, then for any ain L, {x € L | z < a} is a
o-ideal of L by Proposition (2.7).

(3) For a frame Land ain L, |, a = {z € L | z <. a} is a o-ideal of
L by (1), (3) and (4) in Proposition (1.16).

LEMMA 2.17. For (I/\))\EA - O'IdL, \/I,\ = {\/.ﬁlﬁk | (-Tk)keN is a

AEA kEN

sequence in | J I,} in oIdL.
AEA

PROPOSITION 2.18. olIdL is a Lindelof frame.

We now consider the set of all < -o-ideal in a frame L as a candidate
of a Lindelofication of L.

DEFINITION 2.19. Let I be a o-ideal and < a countably strong inclu-
sion on L. Then I is said to be a < -o-ideal if for any a in I, there is b in
I such that a <b.

PROPOSITION 2.20. Let < be a countably strong inclusion on a frame
L. Then for any a in L, {x € L | x<a} is a < -o-ideal.

We note that for a Lindel6f regular D(R;) frame L, < is a countably
strong inclusion on L and hence for any a in L, {x € L | z < a} is a <
-o-ideal.

In the following, let < denote a countably strong inclusion on a frame
L and let S(«) denote the set of all < -o-ideals in L.
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PROPOSITION 2.21. S(«) is a Lindelof subframe of oIdL.

Consider j : oldL — L defined by j(J) = \/J and the restriction
Jo : S(<) — L of j. Since j is a dense homomorphism, so is jo.

Consider k : L — S(«) defined by k(a) = {x € L | v <a}. Then k is
well defined by Proposition (2.20), and \/ k(a) = a, for < is a countably
strong inclusion. Thus jo(k(a)) = a for all a € L. So j, in onto.

The following is immediate from the definition of < -o-ideals.

LEMMA 2.22. For any J in S(<), J = Jk(a).

aed

LEMMA 2.23. If x < a, then k(x) < k(a).
PROPOSITION 2.24. S(<) is regular.

Proof. For any J in S(«), J = [Jk(a) and for any a in J, there is
ac)
x in J such that a <x. By the above lemma, k(a) < k(z) < J. Thus

J=Uk(a) <V{I€S(«)|I<J} <J;hence J=\{Ie S« |I=<JT}
ac]
Therefore S(<) is regular. O
Collecting the above results, we have the following :

THEOREM 2.25. Suppose < is a countably strong inclusion on a frame
L. Then j, : S(<) — L is a Lindeléfication of L.

PROPOSITION 2.26. If L is D(Xy), then so is oIdL.
By Proposition 2.21, 2.24 and 2.26, we have the following :

COROLLARY 2.27. Suppose L is D(X;) and < is closed under count-
able meets. Then S(<) is D(X;) and hence jo : S(<) — L is a D(N;)
Lindeldfication of L.

We note that if L is D(X;), then < is closed under countable meets.
Indeed, x < y, foralln € Nin L, then 2*V ( A yn) = A (2" Vy,) =e
nenN neN
and therefore, z < A y,.
neN

NOTATION 2.28. In the following, jy : S(<) — L will be denoted by
IL : S(<]) — L.
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Let CS(L) be the set of all countably strong inclusions on a frame L.
Then (CS(L), C) is a poset.

DEFINITION 2.29. Let f: M — L and g : N — L be Lindelofications
of a frame L. If there is a frame homomorphism h : M — N with goh = f,
then we say that f is smaller than g and write f < g.

Note that if h exists in the above definition, it is unique since g is
dense and hence a monomorphism for N is a regular frame. Moreover, if
the reverse also holds, then A is an isomorphism, which shows that the
equivalence relation associated with this preorder is just an isomorphism
of Lindelofications.

Let Lind(L) be the set of all equivalent classes of Lindel6fications of
L. Then (Lind(L), <) is a poset. Consider maps ¢ : Lind*(L) — CS(L)

2
defined by ¢(h : M — L) = h(<um) and ¢ : CS(L) — Lind(L) defined
by ¥(<) = (Zy, : S(«) — L), where Lind*(L) denotes the set of all D(X;)
Lindelofications of L.

PROPOSITION 2.30. The map ¢ and ) are isotones.

THEOREM 2.31. Suppose < is a countably strong inclusion on a frame
L such that S(<) is D(Xy). Then ¢(1(<)) = <.

Proof. Take any countably strong inclusion < on L and let <3 =
©(1(<)) the countably strong inclusion determined by (). Note that
VJ < aifand only if J C k(a) = {z € L | x<a} for all J in S(«)
and a in L because J is a < -o-ideal. Thus k is the right adjoint of 7y,
the join map. Thus x <y y if and only if k(x) = Z} (z) < Z{(y) = k(y)
by Proposition 2.12. Suppose x <y y, then there is J in S(«) such that
k(x)ANJ = {0} and k(x)VvJ = L. Thus we have zA\/J =0, and 2Vt =e¢
for some z € k(y) and t € J ; hence z At <z A\/J = 0. Since z is in
k(y), z<y. Thus x < z<y ; hence x <y. Therefore <o C <. If x <y, then
k(x) < k(y) i.e., <o y. Hence <« C <. In all, g5 = <. O

LEMMA 2.32. Let L be a regular frame. Then any codense homomor-
phism h : L — M is 1-1.

LEMMA 2.33. Let L be a regular D(X;) frame and M a Lindelof frame.
Then any dense homomorphism h : L — M is codense.

For a frame homomorphism h : L — M | let oldh : ¢IdLL — ¢IdM be
the frame homomorphism assigning each o-ideal J in L, to the o-ideal
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L h(J) = U{l h(a) | a € J}. Then oldh is a frame homomorphism.

a€lJ
Thus old is a functor from Frm to Frm.

LEMMA 2.34. Let M be a regular D(X,) frame. Then s : M — oldM
defined by s(a) = {x € M | z < a} is a frame homomorphism.

THEOREM 2.35. For a D(X,) Lindeléfication h : M — L of a frame
L, ¢ op(h) = M.

Proof. Let p(h) = <, then z <y if and only if A*(x) < h*(y). It is
enough to show that there is an isomorphism f : M — S(<1) such that
IL o f = h

Define f: M — S(<) by f(a) =] h{z € M | z < a}, which is clearly
a o-ideal in L. Since M is a Lindeldf regular D(X;) frame, < a implies
that x < y < a, for some y in M and hence h(z) < h(y) and h(y) is in
f(a). Thus for any z in f(a), z < h(z) for some = < a ; hence z < h(y)
for some h(y) in f(a). Therefore f(a) is in S(<1). Thus f is well-defined.
For any a in M, \ f(a) = \/{h(x) | * < a} = h(a). Hence we have
IL e} f = h.

As noted above f = (¢ldh) o s, where s(a) = {x € M | z < a}. Thus
by lemma 2.34, f is a frame homomorphism.

Since h is dense, so is f ; hence f is 1-1 by the above lemma.

For any J in S(<), let a = \/h~'(J). Assume that * < a then
e =2*Va=x*V\/ h~(J) and therefore e = 2*V\/ E, for some countable
subset E of h™'(J). Hence x =z Ae=z A (z*V\ E)=xA\E, so
that x < \/ E € h™'(J). Therefore h(z) is in J. And if h(z) is in J,
then there is h(y) in J such that h(x) < h(y), because h is onto. Thus
r < h*h(z) < h*h(y) and h*h(y) = V{z € M | h(z) < h(y)} < a.
Hence < a. This show that h(z) € J if and only if z < a. Since h
is onto, f(a) =| (h{x € M | x < a}) = h({x € M | x < a}), so that
f(a) =J. In all, f is an isomorphism. This completes the proof. Il

2.3. The Smallest Lindelofication. In this section, we deal with Lin-
delofications of countably approximating frames.

PROPOSITION 2.36. Let L be a countably approximating regular D(X;)
frames, then x <. y if and only if x < y and T z* is a Lindelof frame.

Proof. (=) Suppose x <. y. Since L is regular, y = \/{z € L | z <
y}. Since L is D(Xy), {z € y | 2 < y} is countably directed and hence
there is z in L such that z < z and < z, which implies z < y.
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Since L is countably approximating, there exists z in L such that
r K.z L. y. Takeany S CT x* withe =\/S. Theny < e =1\/S. Since

z &, y, there is (a,)neny in S such that z < \/ a,. And z <, z implies
nenN
r < z;hencex < \/ ap. Thuse=2*V(\/ a,) = V (z"Va,) = V a,.
neN nenN neN neN
Hence T z* is a Lindel6f frame.
(<) Suppose that y < \/S for a subest S of L. Since z < y, e =

z*Vy =a*Vv(VS) = V(z*Vs). Since T z* is a Lindeldf frame,

s€S
there is (an)nen in S such that e = \/ (z* Vs,) = 2"V (\/ s,). Hence
nenN nenN
r=xNe=aA@V(Vsi)) =xA(V s,), which implies that
neN neN
x < \/ s,. Therefore r <, y. O

nenN

REMARK. In any frame L, if x < y and T x* is a Lindelof frame, then
T L. y. Furthermore, the relation < on any Lindelof frame L implies <,
for T o* for any x € X. Thus every Lindelof regular frame is countably
approximating, because x = \/[{y e L |y <z} < V{y e L |y <.z} <
x for any x in L.

But the converse does not hold since the frame of the discrete topology
on the real line is countably approximating but not a Lindelof frame.

Using the above remark, we have the following corollary.

COROLLARY 2.37. Let L be a Lindel6f regular D(X,) frame and z, y
in L. Then x <. y if and only if © < y.

We define a <1<1b in a frame L if and only if a < b, and T a* or T b
18 a Lindelof frame.

PROPOSITION 2.38. Let L be a frame and a, b, x, y in L. Then

(1) If x < a <<b <y, then x <<y.

(2) If x<1<da and x<1<4b, then x <<da A'b.

(3) If x <<da, then a* <<x*.

(4) Suppose L is a D(Xy) frame, and x, <\<a for all n € N, then

V z, <<a.
neN

PrRoPOSITION 2.39. Suppose L is a countably approximating regular
D(Xy) frame. Then << interpolates.
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Proof. Suppose that © <<<da. Then z < a.

Assume that T x* is a Lindelof frame. Then x <. a by Proposition
2.36, and since L is countably approximating, there is b in L such that
T <. b<.aand hence x < b < a. Since r < b and T x* is a Lindelof
frame, x <1< b. Since b <. a and T b* is a Lindeldf frame, b <1<da. In
all, z <<b <1<a.

Assume that T a is a Lindelof frame. Since x < a, there is z in L such
that tAz=0andaVz=e Thuse=aVz=aV\{uel|u<k,.z}
Since T a is a Lindeldf frame, there is a sequence (uy,)neny in L such that

u, <. zand aV \/ u, =e. Let u = \/ u,. Then u <. z and hence
neN neN
u < z and z* < u*. Since z < z*, r < u*. Since u <. z, T u* is a

Lindelof frame and hence x <10 u*. Since a V z = e, u* < a and hence
u* << a. In all, x << u* << a. Il

Collecting the above propositions, we can conclude the following:

PROPOSITION 2.40. If L is a countably approximating regular D(Ry)
frame, then the relation <1<l is a countably strong inclusion.

THEOREM 2.41. A countably approximating regular D(X;) frame L
has a smallest countably strong inclusion.

Proof. By the above proposition, it is enough to show that a countably
strong inclusion <1 on L contains <1<.

Suppose that © <<t y. Then x < y.

Assume that T x* is a Lindelof frame, then by Proposition 2.36, r <.
y=V{z€L|z<y}and {z € L |z <y} is countably directed. Thus
there is z in L such that x < z and z < y and hence x < y.

Suppose that T y is a Lindelof frame. Since x < vy, there is u in L such
that t A\u=0and yVu=e. Thuse=yVu=yV\{vel|vau}
Since T y is a Lindelof frame, there is a sequence (v,,)nen in L such that
yV(Vwv,) =eandv, <uforalneN. Let v =\ v,. Then v < u

neN neN
and y Vv =-e. Thus x < u* < v* < y; hence x < y. This completes the
proof. O]

We will show that a frame which has the smallest D(RX;) Lindel6fication
is countably approximating regular.

LEMMA 2.42. Let M be a Lindel6f regular D(X;) frame and a an
element of M. Then M, = {x € M |z < a or x V a = e} is a regular
subframe of M.
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LEMMA 2.43. Let M be a countably approximating frame and a in
M. Then | a is countably approximating.

THEOREM 2.44. Suppose that a frame L has the smallest Lindeléfication
h: M — L such that M is D(X;). Then L is a countably approximating
regular frame.

Proof. Case 1. L is a Lindelof frame.

By Lemma 2.32 and 2.33, h is 1-1 and hence an isomorphism. Thus
L is countably approximating regular because M is by above remark.

Case 2. L is not a Lindelof frame.

Then h is not an isomorphism and hence not codense by Lemma 2.32.
Thus there is @ in M with a < e and h(a) = e. Then M, is a regular
subframe of M where M, = {x € M | z < a or x V a = e}, by Lemma
2.42.

Consider h : M, — L defined by h(z) = h(z), which is a frame
homomorphism since M, is a subframe of M. Since h is onto and h(a) =
e, h is also onto. Since M is a Lindelsf frame, so is M, by Corollary
2.4. Moreover h is dense for h is dense. Thus h is a Lindelofication of L.
Since M, is also closed under countable meets in M, M, is also D(Xy).
Since M is the smallest D(X;) Lindeldfication, M, = M and hence for
any v in M, z <aorzVa=e.

Consider h :| a — L defined by h(z) = h(z) which is an onto frame
homomorphism by the same argument for A.

If b <aand h(b) = e, then M, = M = M,; hence a < borbVa=e.
Since b < a implies aVb = a, and a < e, aVb # e. Thus a = b. Therefore
h is codense and 1-1 by Lemma 2.32 so that A is an isomorphism.

Since M, is a Lindelof regular frame and a is in M,, | a is count-
ably approximating. Hence L is countably approximating for h is an
isomorphism. This completes the proof. Il

REMARK. In the above proof, a is, in fact, a maximal element in M.
Indeed, suppose that a < b < e. Then since b € M = M,, b < a or
bVa=e. But bVa # e, because a Vb =b < e. Thus a = 0.
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