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LINDELÖFICATION OF FRAMES

Mee Kyung Khang

Abstract. We introduce a concept of countably strong inclusions
/ and that of /-σ-ideals and prove that the subframe S(/) of the
frame σIdL of σ-ideals is a Lindelöfication of a frame L. We also
deal with conditions for which the converse holds. We show that
any countably approximating regular D(ℵ1) frame has the smallest
countably strong inclusion and any frame which has the smallest
D(ℵ1) Lindelöfication is countably approximating regular D(ℵ1).

1. Introduction and preliminaries

This section is a collection of basic definitions and results on frames.
For general notions and facts concerning frames, we refer to Johnstone[10].

1.1. Frames.

Definition 1.1. ([3]) A frame is a complete lattice L in which binary
meet distributes over arbitrary join, that is, x∧∨

S =
∨{x∧ s ∈ S} for

any x in L and any subset S of L.

We will denote the bottom element of a frame L by 0 or 0L and the
top element by e or eL.

Example 1.2. (1) Every complete chain is a frame.
(2) Every complete Boolean algebra is a frame.
(3) For a topological space X, the open set lattice Ω(X) of X under

the inclusion is a frame.
(4) For a topological space X, the regular open set lattice Oreg(X) is

a complete Boolean algebra and hence it is a frame.
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Definition 1.3. A frame homomorphism is a map h : L → M be-
tween frames L and M Preserving all finitary meets and binary joins.

For any element a of a frame L, the map a ∧ : L → L preserves
arbitraty joins; hence it has a right adjont, which will be denoted by
a → : L → L. In particular, a → 0 exists for any a in L and we write
a → 0 = a∗, called the pseudocomplement of a.

Proposition 1.4. Let L be a frame and a,b in L. Then we have :

(1) 0∗ = e and e∗ = 0.
(2) a ∧ a∗ = a∗∗ ∧ a∗ = 0.
(3) a ≤ a∗∗.
(4) If a ≤ b, then a∗ ≥ b∗.
(5) (

∨
ι∈I

aι)
∗ =

∧
ι∈I

aι
∗ for any family (aι)ι∈I in L.

A frame homomorphism h : L → M has the right adjoint which will
be denoted by h∗ and given by

h∗(y) =
∨
{x ∈ L | h(x) ≤ (y)}(y ∈ M).

Then h∗ has the following properties :

(1) h is 1-1 if and only h∗ ◦ h = idL.
(2) h is onto if and only if h ◦ h∗ = idM.

Definition 1.5. A frame homomorphism h : L → M is said to be :

(1) dense if h(a) = 0 implies a = 0.
(2) codense if h(a) = e implies a = e.

1.2. Some Special Frames.

Definition 1.6. ([8])Let L be a frame and a, b in L. We say that a
is rather below b, if there exists c in L such that a∧ c = 0 and b∨ c = e,
equivalently, a∗ ∨ b = e. In this case, we write a ≺ b.

We note that u ≺ v in Ω(X) means u ⊆ v, for a topological space
(X, Ω(X)).

Proposition 1.7. Let L be a frame and a, b, x, y in L. Then

(1) 0 ≺ x and x ≺ e.
(2) a ≺ a if and only if a is complemented.
(3) a ≺ b implies a ≤ b.
(4) If x ≤ a ≺ b ≤ y, then x ≺ y.
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(5) If a ≺ b and x ≺ y, then a ∧ x ≺ b ∧ y and a ∨ x ≺ b ∨ y.
(6) a ≺ b implies b∗ ≺ a∗.

Proposition 1.8. Let L and M be bounded distributive lattices and
f : L → M a bounded lattice homomorphism. Then f preserves ≺.

Definition 1.9. A frame L is said to be regular if for any a in L,
a =

∨{b ∈ L|b ≺ a}.
It is clear that a topological space (X, Ω(X)) is regular if and only if

Ω(X) is a regular frame.

Definition 1.10. Let L be a complete lattice and a, b in L. We say
that a is way below b and write a ¿ b, if for any subset S of L, b ≤ ∨

S
implies a ≤ ∨E for some finite subset E of S.

Example 1.11. Let (X, Ω(X)) be a locally compact space. Then
u ¿ v in Ω(X) if and only if there is a compact subset w of X such that
u ⊆ w ⊆ v.

In [8], we have the following :

Definition 1.12. A complete lattice L is said to be continuous, if for
any a in L, a =

∨{x ∈ L | x ¿ a}.
Proposition 1.13. If L is a continuous frame, then the relation ¿

interpolates, i.e., for x ¿ y, there is z in L with x ¿ z ¿ y.

Definition 1.14. Let L be a complete lattice and a, b in L. We say
that a is countably way below b and write a ¿c b, if for any subset S of
L, b ≤ ∨

S implies a ≤ ∨
C for some countable subset C of S.

Example 1.15. (1) Let A and B be subsets of a set X. Then A ¿c

B in the frame ℘(X) of the power set of X if and only if there is
a countable subset C of X with A ⊆ C ⊆ B.

(2) In Ω(X) of a topological space (X, Ω(X)), u ¿c v if there is a
Lindelöf subset w of X with u ⊆ w ⊆ v. If X is locally Lindelöf,
then the converse also holds.

Proposition 1.16. Let L be a frame and a, b, x, y in L. Then

(1) 0 ¿c a.
(2) a ¿c b implies a ≤ b.
(3) If x ≤ a ¿c b ≤ y, then x ¿c y.
(4) If an ¿c b for all n ∈ N , then

∨
n∈N

an ¿c b.
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(5) If a ¿ b, then a ¿c b.

Definition 1.17. ([11])A complete lattice L is said to be countably
approximating, if for any x in L, x =

∨{a ∈ L | a ¿c x}.
Example 1.18. (1) A continuous frame L is countably approxi-

mating by (5) of Proposition 1.16.
(2) If a frame is countable, then it is countably approximating.
(3) The frame Ω(X) of a locally Lindelöf space (X, Ω(X)) is countably

approximating.

2. Lindelöfication of a Frame

In this section, we deal with Lindelöfications of frames. We define
countably strong inclusions on a frame and study relationship between
Lindelöfications and countably strong inclusions.

2.1. Lindelöf Frames. The following definition is a natural general-
ization of compact frames.

Definition 2.1. A frame L is said to be a Lindelöf frame, if for any
subset S of L with

∨
S = e, there is a countable subset C of S such that∨

C = e.

Remark. (1) A topological space (X, Ω(X)) is a Lindelöf space if
and only if Ω(X) is a Lindelöf frame.

(2) A frame L is a Lindelöf frame if there is a countable subset B of
L such that for any x in L, x =

∨
B′ for some B′ ⊆ B. Thus the

regular open set lattice Oreg(R) of the real line R is a non-spatial
Lindelöf frame.

Using the definition of a closed sublocale and codense homomorphism,
we obtain :

Proposition 2.2. A closed sublocale of a Lindelöf frame is a Lindelöf
frame.

Proposition 2.3. If h : L → M is a codence frame homomorphism
and M is a Lindelöf frame, then L is a Lindelöf frame.

A 1-1 frame homomorphism is clearly codence and therefore the fol-
lowing is immedate;
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Corollary 2.4. If h : L → M is a 1-1 frame homomorphism and M
is a Lindelöf frame, then L is a Lindelöf frame.

Definition 2.5. A frame L is said to be a D(ℵ1) frame, if for any a
in L and any sequence (bn)n∈N in L, a ∨ (

∧
n∈N

bn) =
∧

n∈N

(a ∨ bn).

Example 2.6. (1) Suppose Ω(X) of a topological space X is closed
under countable intersections, then Ω(X) is a D(ℵ1) frame. In
particular, for any topological space X, the topology generated
by the set of all Gδ-sets in the space is a D(ℵ1) frame.

(2) Every completely distributive frame is D(ℵ1).
(3) Every complete Boolean algebra is D(ℵ1) and hence atomless

complete Boolean algebra is non-spatial D(ℵ1).
(4) The regular open set lattice Oreg(R) of the real line R is a non-

spatial Lindelöf D(ℵ1) frame. But the open set frame Ω(R) of the
real line is not D(ℵ1).

Proposition 2.7. If xn ≺ y for all n in N in a D(ℵ1) frame L, then∨
n∈N

xn ≺ y in L.

Proof. By the assumption, x∗n∨y = e for all n in N . Since L is D(ℵ1),
(

∨
n∈N

xn)∗ ∨ y = (
∧

n∈N

xn
∗) ∨ y =

∧
n∈N

(xn
∗ ∨ y) = e. Thus

∨
n∈N

xn ≺ y.

2.2. Lindelöfication of a Frame. In this section, we introduce a con-
cept of countably strong inclusions and using these, we construct Lin-
delöfication of frames.

Definition 2.8. A binary relation / on a frame L is said to be a
countably strong inclusion, if it satisfies :

(1) if x ≤ a / b ≤ y, then x / y.
(2) / is closed under finite meets and countable joins.
(3) a / b implies a ≺ b.
(4) / interpolates.
(5) a / b implies b∗ / a∗.
(6) a =

∨{x ∈ L | x / a} for any a in L.

Remark. (1) A binary relation / on a frame with the condition
1) in the above definition satisfies 2) if and only if / satisfies :
(i) e / e; if x / y1 and x / y2, then x / y1 ∧ y2 and
(ii) if xn / y for all n in N , then

∨
n∈N

xn / y.
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(2) Let X be a set. Then ⊆ is a countably strong inclusion on ℘(X).

By proposition 1.7, we have the following :

Proposition 2.9. If L is a Lindelöf regular D(ℵ1) frame, then ≺ is
a countably strong inclusion.

Example 2.10. (1) ℘(N) is a Lindelöf regular D(ℵ1) frame.
(2) Let X be an uncountable set and p a particular point of X. Define

a topology on X by declaring open any set whose complement
either is countable or includes p. Then Ω(X) is a Lindelöf regular
D(ℵ1) frame.

We will investigate the relationship between countably strong inclu-
sions and Lindelöfication.

Definition 2.11. A Lindelöfication of a frame L is a dense, onto
frame homomorphism h : L → M such that M is a Lindelöf regular
frame.

Consider a dense onto frame homomorphism h : L → M with the
right adjoint h∗ : L → M. We define a relation / on L as follows : x / y
if and only if h∗(x) ≺ h∗(y) for any x, y in L. Then since h is onto,

h ◦ h∗ = idL and hence / ⊆
2

h(≺), where
2

h denotes the map h× h.

Using these notions, we have the following:

Proposition 2.12. / =
2

h(≺)

Proof. Suppose u ≺ v in M and let h(u) = x and h(v) = y. Then
v ≤ h∗(y); hence u ≺ h∗(y). Thus there exists t in M such that u∧ t = 0
and h∗(y) ∨ t = e. Since h is onto, h(h∗(x) ∧ t) = h(h∗(x)) ∧ h(t) =
x ∧ h(t) = h(u) ∧ h(t) = h(u ∧ t) = 0. Since h is dense, h∗(x) ∧ t = 0.
Thus h∗(x) ≺ h∗(y); hence x / y.

The properties of pseudocomplements and dense homomorphisms lead
us the following :

Lemma 2.13. For a dense onto homomorphism h : M → L, (h∗(a))∗ =
h∗(a)∗ for all a in L.

Proposition 2.14. Suppose that h : M → L is a Lindelöfication of a
frame L and M is a D(ℵ1) frame. Then the relation / defined as above
is a countably strong inclusion on L.



Lindelöfication of Frames 93

In the following, we construct a Lindelöfication from a countably
strong inclusion. For this, we study some properties of σ-ideals.

We recall that a subset D of a poset L is said to be countably directed,
if every countable subset of D has an upper bound in L.

Definition 2.15. A subset I of a frame L is said to be a σ-ideal if
it is a countably directed lower set, equivalently, it is a lower set and
closed under countable joins.

Let σIdL denote the set of all σ-ideals in L. Then σIdL is clearly
closed under arbitrary intersections in the power set lattice ℘(L) of L
and therefore it is a complete lattice.

Example 2.16. (1) Let X be an infinite set. Count(X) = {S ⊆
X | S is a countable set } is a σ-ideal of ℘(X). Fin(X) = {F ⊆ X |
F is a finite set} is an ideal but not a σ-ideal of ℘X.

(2) If L is a D(ℵ1) frame, then for any a in L, {x ∈ L | x ≺ a} is a
σ-ideal of L by Proposition (2.7).

(3) For a frame L and a in L, ↓c a = {x ∈ L | x ¿c a} is a σ-ideal of
L by (1), (3) and (4) in Proposition (1.16).

Lemma 2.17. For (Iλ)λ∈Λ ⊆ σIdL,
∨

λ∈Λ

Iλ = { ∨
k∈N

xk | (xk)k∈N is a

sequence in
⋃

λ∈Λ

Iλ} in σIdL.

Proposition 2.18. σIdL is a Lindelöf frame.

We now consider the set of all / -σ-ideal in a frame L as a candidate
of a Lindelöfication of L.

Definition 2.19. Let I be a σ-ideal and / a countably strong inclu-
sion on L. Then I is said to be a / -σ-ideal if for any a in I, there is b in
I such that a / b.

Proposition 2.20. Let / be a countably strong inclusion on a frame
L. Then for any a in L, {x ∈ L | x / a} is a / -σ-ideal.

We note that for a Lindelöf regular D(ℵ1) frame L, ≺ is a countably
strong inclusion on L and hence for any a in L, {x ∈ L | x ≺ a} is a ≺
-σ-ideal.

In the following, let / denote a countably strong inclusion on a frame
L and let S(/) denote the set of all / -σ-ideals in L.
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Proposition 2.21. S(/) is a Lindelöf subframe of σIdL.

Consider j : σIdL → L defined by j(J) =
∨

J and the restriction
j0 : S(/) → L of j. Since j is a dense homomorphism, so is j0.

Consider k : L → S(/) defined by k(a) = {x ∈ L | x / a}. Then k is
well defined by Proposition (2.20), and

∨
k(a) = a, for / is a countably

strong inclusion. Thus j0(k(a)) = a for all a ∈ L. So j0 in onto.

The following is immediate from the definition of / -σ-ideals.

Lemma 2.22. For any J in S(/), J =
⋃
a∈J

k(a).

Lemma 2.23. If x / a, then k(x) ≺ k(a).

Proposition 2.24. S(/) is regular.

Proof. For any J in S(/), J =
⋃
a∈J

k(a) and for any a in J, there is

x in J such that a / x. By the above lemma, k(a) ≺ k(x) ≤ J. Thus
J =

⋃
a∈J

k(a) ≤ ∨{I ∈ S(/) | I ≺ J} ≤ J ; hence J =
∨{I ∈ S(/) | I ≺ J}.

Therefore S(/) is regular.

Collecting the above results, we have the following :

Theorem 2.25. Suppose / is a countably strong inclusion on a frame
L. Then j0 : S(/) → L is a Lindelöfication of L.

Proposition 2.26. If L is D(ℵ1), then so is σIdL.

By Proposition 2.21, 2.24 and 2.26, we have the following :

Corollary 2.27. Suppose L is D(ℵ1) and / is closed under count-
able meets. Then S(/) is D(ℵ1) and hence j0 : S(/) → L is a D(ℵ1)
Lindelöfication of L.

We note that if L is D(ℵ1), then ≺ is closed under countable meets.
Indeed, x ≺ yn for all n ∈ N in L, then x∗ ∨ (

∧
n∈N

yn) =
∧

n∈N

(x∗ ∨ yn) = e

and therefore, x ≺ ∧
n∈N

yn.

Notation 2.28. In the following, j0 : S(/) → L will be denoted by
IL : S(/) → L.



Lindelöfication of Frames 95

Let CS(L) be the set of all countably strong inclusions on a frame L.
Then (CS(L),⊆) is a poset.

Definition 2.29. Let f : M → L and g : N → L be Lindelöfications
of a frame L. If there is a frame homomorphism h : M → N with g◦h = f ,
then we say that f is smaller than g and write f ≤ g.

Note that if h exists in the above definition, it is unique since g is
dense and hence a monomorphism for N is a regular frame. Moreover, if
the reverse also holds, then h is an isomorphism, which shows that the
equivalence relation associated with this preorder is just an isomorphism
of Lindelöfications.

Let Lind(L) be the set of all equivalent classes of Lindelöfications of
L. Then (Lind(L),≤) is a poset. Consider maps ϕ : Lind∗(L) → CS(L)

defined by ϕ(h : M → L) =
2

h(≺M) and ψ : CS(L) → Lind(L) defined
by ψ(/) = (IL : S(/) → L), where Lind∗(L) denotes the set of all D(ℵ1)
Lindelöfications of L.

Proposition 2.30. The map ϕ and ψ are isotones.

Theorem 2.31. Suppose / is a countably strong inclusion on a frame
L such that S(/) is D(ℵ1). Then ϕ(ψ(/)) = /.

Proof. Take any countably strong inclusion / on L and let /0 =
ϕ(ψ(/)) the countably strong inclusion determined by ψ(/). Note that∨

J ≤ a if and only if J ⊆ k(a) = {x ∈ L | x / a} for all J in S(/)
and a in L because J is a / -σ-ideal. Thus k is the right adjoint of IL,
the join map. Thus x /0 y if and only if k(x) = I∗L(x) ≺ I∗L(y) = k(y)
by Proposition 2.12. Suppose x /0 y, then there is J in S(/) such that
k(x)∧J = {0} and k(x)∨J = L. Thus we have x∧∨

J = 0, and z∨t = e
for some z ∈ k(y) and t ∈ J ; hence x ∧ t ≤ x ∧∨

J = 0. Since z is in
k(y), z / y. Thus x ≺ z / y ; hence x / y. Therefore /0 ⊆ /. If x / y, then
k(x) ≺ k(y) i.e., x /0 y. Hence / ⊆ /0. In all, /0 = /.

Lemma 2.32. Let L be a regular frame. Then any codense homomor-
phism h : L → M is 1-1.

Lemma 2.33. Let L be a regular D(ℵ1) frame and M a Lindelöf frame.
Then any dense homomorphism h : L → M is codense.

For a frame homomorphism h : L → M , let σIdh : σIdL → σIdM be
the frame homomorphism assigning each σ-ideal J in L, to the σ-ideal
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↓ h(J) =
⋃
a∈J

{↓ h(a) | a ∈ J}. Then σIdh is a frame homomorphism.

Thus σId is a functor from Frm to Frm.

Lemma 2.34. Let M be a regular D(ℵ1) frame. Then s : M → σIdM
defined by s(a) = {x ∈ M | x ≺ a} is a frame homomorphism.

Theorem 2.35. For a D(ℵ1) Lindelöfication h : M → L of a frame
L, ψ ◦ ϕ(h) ∼= M.

Proof. Let ϕ(h) = C, then x C y if and only if h∗(x) ≺ h∗(y). It is
enough to show that there is an isomorphism f : M → S(C) such that
IL ◦ f = h.

Define f : M → S(C) by f(a) =↓ h{x ∈ M | x ≺ a}, which is clearly
a σ-ideal in L. Since M is a Lindelöf regular D(ℵ1) frame, x ≺ a implies
that x ≺ y ≺ a, for some y in M and hence h(x) C h(y) and h(y) is in
f(a). Thus for any z in f(a), z ≤ h(x) for some x ≺ a ; hence z C h(y)
for some h(y) in f(a). Therefore f(a) is in S(C). Thus f is well-defined.
For any a in M,

∨
f(a) =

∨{h(x) | x ≺ a} = h(a). Hence we have
IL ◦ f = h.

As noted above f = (σIdh) ◦ s, where s(a) = {x ∈ M | x ≺ a}. Thus
by lemma 2.34, f is a frame homomorphism.

Since h is dense, so is f ; hence f is 1-1 by the above lemma.
For any J in S(C), let a =

∨
h−1(J). Assume that x ≺ a then

e = x∗∨a = x∗∨∨
h−1(J) and therefore e = x∗∨∨

E, for some countable
subset E of h−1(J). Hence x = x ∧ e = x ∧ (x∗ ∨ ∨

E) = x ∧ ∨
E, so

that x ≤ ∨
E ∈ h−1(J). Therefore h(x) is in J. And if h(x) is in J,

then there is h(y) in J such that h(x) C h(y), because h is onto. Thus
x ≤ h∗h(x) ≺ h∗h(y) and h∗h(y) =

∨{z ∈ M | h(z) ≤ h(y)} ≤ a.
Hence x ≺ a. This show that h(x) ∈ J if and only if x ≺ a. Since h
is onto, f(a) =↓ (h{x ∈ M | x ≺ a}) = h({x ∈ M | x ≺ a}), so that
f(a) = J. In all, f is an isomorphism. This completes the proof.

2.3. The Smallest Lindelöfication. In this section, we deal with Lin-
delöfications of countably approximating frames.

Proposition 2.36. Let L be a countably approximating regular D(ℵ1)
frames, then x ¿c y if and only if x ≺ y and ↑ x∗ is a Lindelöf frame.

Proof. (⇒) Suppose x ¿c y. Since L is regular, y =
∨{z ∈ L | z ≺

y}. Since L is D(ℵ1), {z ∈ y | z ≺ y} is countably directed and hence
there is z in L such that x ≺ z and x ≤ z, which implies x ≺ y.
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Since L is countably approximating, there exists z in L such that
x ¿c z ¿c y. Take any S ⊆↑ x∗ with e =

∨
S. Then y ≤ e =

∨
S. Since

z ¿c y, there is (an)n∈N in S such that z ≤ ∨
n∈N

an. And x ¿c z implies

x ≺ z ; hence x ≺ ∨
n∈N

an. Thus e = x∗∨(
∨

n∈N

an) =
∨

n∈N

(x∗∨an) =
∨

n∈N

an.

Hence ↑ x∗ is a Lindelöf frame.
(⇐) Suppose that y ≤ ∨

S for a subest S of L. Since x ≺ y, e =
x∗ ∨ y = x∗ ∨ (

∨
S) =

∨
s∈S

(x∗ ∨ s). Since ↑ x∗ is a Lindelöf frame,

there is (an)n∈N in S such that e =
∨

n∈N

(x∗ ∨ sn) = x∗ ∨ (
∨

n∈N

sn). Hence

x = x ∧ e = x ∧ (x∗ ∨ (
∨

n∈N

sn)) = x ∧ (
∨

n∈N

sn), which implies that

x ≤ ∨
n∈N

sn. Therefore x ¿c y.

Remark. In any frame L, if x ≺ y and ↑ x∗ is a Lindelöf frame, then
x ¿c y. Furthermore, the relation ≺ on any Lindelöf frame L implies¿c

for ↑ x∗ for any x ∈ X. Thus every Lindelöf regular frame is countably
approximating, because x =

∨{y ∈ L | y ≺ x} ≤ ∨{y ∈ L | y ¿c x} ≤
x for any x in L.

But the converse does not hold since the frame of the discrete topology
on the real line is countably approximating but not a Lindelöf frame.

Using the above remark, we have the following corollary.

Corollary 2.37. Let L be a Lindelöf regular D(ℵ1) frame and x, y
in L. Then x ¿c y if and only if x ≺ y.

We define a CCb in a frame L if and only if a ≺ b, and ↑ a∗ or ↑ b
is a Lindelöf frame.

Proposition 2.38. Let L be a frame and a, b, x, y in L. Then

(1) If x ≤ a CCb ≤ y, then x CCy.
(2) If xCCa and xCCb, then x CCa ∧ b.
(3) If x CCa, then a∗ CCx∗.
(4) Suppose L is a D(ℵ1) frame, and xn CCa for all n ∈ N , then∨

n∈N

xn CCa.

Proposition 2.39. Suppose L is a countably approximating regular
D(ℵ1) frame. Then CC interpolates.
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Proof. Suppose that x CCa. Then x ≺ a.
Assume that ↑ x∗ is a Lindelöf frame. Then x ¿c a by Proposition

2.36, and since L is countably approximating, there is b in L such that
x ¿c b ¿c a and hence x ≺ b ≺ a. Since x ≺ b and ↑ x∗ is a Lindelöf
frame, x CC b. Since b ¿c a and ↑ b∗ is a Lindelöf frame, b CCa. In
all, x CCb CCa.

Assume that ↑ a is a Lindelöf frame. Since x ≺ a, there is z in L such
that x ∧ z = 0 and a ∨ z = e. Thus e = a ∨ z = a ∨∨{u ∈ L | u ¿c z}.
Since ↑ a is a Lindelöf frame, there is a sequence (un)n∈N in L such that
un ¿c z and a ∨ ∨

n∈N

un = e. Let u =
∨

n∈N

un. Then u ¿c z and hence

u ≺ z and z∗ ≺ u∗. Since x ≤ z∗, x ≺ u∗. Since u ¿c z, ↑ u∗ is a
Lindelöf frame and hence x CC u∗. Since a ∨ z = e, u∗ ≺ a and hence
u∗ CC a. In all, x CC u∗ CC a.

Collecting the above propositions, we can conclude the following:

Proposition 2.40. If L is a countably approximating regular D(ℵ1)
frame, then the relation CC is a countably strong inclusion.

Theorem 2.41. A countably approximating regular D(ℵ1) frame L
has a smallest countably strong inclusion.

Proof. By the above proposition, it is enough to show that a countably
strong inclusion C on L contains CC.

Suppose that x CC y. Then x ≺ y.
Assume that ↑ x∗ is a Lindelöf frame, then by Proposition 2.36, x ¿c

y =
∨{z ∈ L | z C y} and {z ∈ L | z C y} is countably directed. Thus

there is z in L such that x ≤ z and z C y and hence x C y.
Suppose that ↑ y is a Lindelöf frame. Since x ≺ y, there is u in L such

that x ∧ u = 0 and y ∨ u = e. Thus e = y ∨ u = y ∨∨{v ∈ L | v C u}.
Since ↑ y is a Lindelöf frame, there is a sequence (vn)n∈N in L such that
y ∨ (

∨
n∈N

vn) = e and vn C u for all n ∈ N . Let v =
∨

n∈N

vn. Then v C u

and y ∨ v = e. Thus x ≤ u∗ C v∗ ≤ y; hence x C y. This completes the
proof.

We will show that a frame which has the smallest D(ℵ1) Lindelöfication
is countably approximating regular.

Lemma 2.42. Let M be a Lindelöf regular D(ℵ1) frame and a an
element of M. Then Ma = {x ∈ M | x ≤ a or x ∨ a = e} is a regular
subframe of M.
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Lemma 2.43. Let M be a countably approximating frame and a in
M. Then ↓ a is countably approximating.

Theorem 2.44. Suppose that a frame L has the smallest Lindelöfication
h : M → L such that M is D(ℵ1). Then L is a countably approximating
regular frame.

Proof. Case 1. L is a Lindelöf frame.
By Lemma 2.32 and 2.33, h is 1-1 and hence an isomorphism. Thus

L is countably approximating regular because M is by above remark.
Case 2. L is not a Lindelöf frame.
Then h is not an isomorphism and hence not codense by Lemma 2.32.

Thus there is a in M with a < e and h(a) = e. Then Ma is a regular
subframe of M where Ma = {x ∈ M | x ≤ a or x ∨ a = e}, by Lemma
2.42.

Consider h : Ma → L defined by h(x) = h(x), which is a frame
homomorphism since Ma is a subframe of M. Since h is onto and h(a) =
e, h is also onto. Since M is a Lindelöf frame, so is Ma by Corollary
2.4. Moreover h is dense for h is dense. Thus h is a Lindelöfication of L.
Since Ma is also closed under countable meets in M, Ma is also D(ℵ1).
Since M is the smallest D(ℵ1) Lindelöfication, Ma = M and hence for
any x in M, x ≤ a or x ∨ a = e.

Consider h̃ :↓ a → L defined by h̃(x) = h(x) which is an onto frame
homomorphism by the same argument for h.

If b ≤ a and h(b) = e, then Mb = M = Ma; hence a ≤ b or b ∨ a = e.
Since b ≤ a implies a∨b = a, and a < e, a∨b 6= e. Thus a = b. Therefore

h̃ is codense and 1-1 by Lemma 2.32 so that h̃ is an isomorphism.
Since Ma is a Lindelöf regular frame and a is in Ma, ↓ a is count-

ably approximating. Hence L is countably approximating for h̃ is an
isomorphism. This completes the proof.

Remark. In the above proof, a is, in fact, a maximal element in M.
Indeed, suppose that a ≤ b < e. Then since b ∈ M = Ma, b ≤ a or
b ∨ a = e. But b ∨ a 6= e, because a ∨ b = b < e. Thus a = b.
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