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GENERALIZED JENSEN’S
EQUATIONS IN A HILBERT MODULE

Jong Su An, Jung Rye Lee∗ and Choonkil Park

Abstract. We prove the stability of generalized Jensen’s equations
in a Hilbert module over a unital C∗-algebra. This is applied to
show the stability of a projection, a unitary operator, a self-adjoint
operator, a normal operator, and an invertible operator in a Hilbert
module over a unital C∗-algebra.

1. Introduction

Let E1 and E2 be Banach spaces, and f : E1 → E2 a mapping such
that f(tx) is continuous in t ∈ R for each fixed x ∈ E1. Assume that
there exist constants ε ≥ 0 and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(||x||p + ||y||p)
for all x, y ∈ E1. Th.M. Rassias [14] showed that there exists a unique
R-linear mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
||x||p

for all x ∈ E1.
Throughout this paper, let A be a unital C∗-algebra with a norm

|·|, A 1
2

= {a ∈ A | |a| = 1
2}, A+

1
2

the set of positive elements in A 1
2
, Ain

the set of invertible elements in A, Asa the set of self-adjoint elements
in A, R+ the set of nonnegative real numbers, and AH a left Hilbert
A-module with a norm ‖ · ‖.

We prove the Hyers-Ulam-Rassias stability of generalized Jensen’s
equations in a Hilbert module over a unital C∗-algebra.
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2. Stability of generalized Jensen’s equations in a Hilbert
module over a C∗-algebra

In this section, let ϕ : AH \ {0} × AH \ {0} → [0,∞) be a function
such that

ϕ̃(x, y) :=
∞∑

k=0

3−kϕ(3kx, 3ky) < ∞.

Lemma 2.1. Let F : AH → AH be a mapping such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1
2
∪ {i} and all x, y ∈ AH \ {0}. If F (tx) is continuous

in t ∈ R for each fixed x ∈ AH, then there exists a unique A-linear
operator T : AH → AH such that

(i) ‖F (x)− F (0)− T (x)‖ ≤ 1
3
(ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ AH \ {0}.
Proof. Let a = 1

2 ∈ A+
1
2

in the statement. By [11, Theorem 1], there
exists a unique additive mapping T : AH → AH satisfying (i). The
mapping T : AH → AH was given by

T (x) = lim
n→∞

F (3nx)
3n

.

The additive mapping T given in the proof of [11, Theorem 1] is similar
to the additive mapping T given in the proof of [14, Theorem]. By the
same reasoning as in the proof of [14, Theorem], it follows from the
assumption that F (tx) is continuous in t ∈ R for each fixed x ∈ AH
that the additive mapping T : AH → AH is R-linear.

Since a = 1
2 ∈ A+

1
2
,

‖2F (
1
2
x +

1
2
y)− F (x)− F (y)‖ ≤ ϕ(x, y)
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for all x, y ∈ AH \ {0}. For each a ∈ A+
1
2
∪ {i},

‖2F (
1
2
2ax +

1
2
x)− F (2ax)− F (x)‖ ≤ ϕ(2ax, x)

for all x ∈ AH \ {0}. So

‖F (2ax)− 2aF (x)‖ ≤‖2F (ax +
1
2
x)− 2aF (x)− F (x)‖

+ ‖2F (ax +
1
2
x)− F (2ax)− F (x)‖

≤ϕ(x, x) + ϕ(2ax, x)

for all a ∈ A+
1
2
∪ {i} and all x ∈ AH \ {0}. Thus 3−n‖F (3n2ax) −

2aF (3nx)‖ → 0 as n → ∞ for all a ∈ A+
1
2
∪ {i} and all x ∈ AH \ {0}.

Hence

T (2ax) = lim
n→∞

3−nF (3n2ax) = lim
n→∞

3−n2aF (3nx) = 2aT (x)

for all a ∈ A+
1
2
∪{i} and all x ∈ AH\{0}. But T (2ax) = T (ax + ax) =

2T (ax) since T is additive. So T (ax) = aT (x) for all a ∈ A+
1
2
∪ {i}

and all x ∈ AH \ {0}. Since T is R-linear and T (ax) = aT (x) for each
a ∈ A+

1
2
∪ {i},

T (ax) = T (2|a| · a

2|a|x) = 2|a| · T (
a

2|a|x) = 2|a| · a

2|a| · T (x) = aT (x)

for all positive elements a ∈ A \ {0} and all x ∈ AH. Thus

T (ax) =aT (x),

T (ix) =iT (x)

for all positive elements a ∈ A and all x ∈ AH.
For any element a ∈ A, a = a1+ia2, where a1 = a+a∗

2 and a2 = a−a∗
2i

are self-adjoint elements, furthermore, a = a1
+ − a1

− + ia2
+ − ia2

−,
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where a1
+, a1

−, a2
+, and a2

− are positive elements (see [3, Lemma
38.8]). So

T (ax) =T (a1
+x− a1

−x + ia2
+x− ia2

−x)

=a1
+T (x)− a1

−T (x) + a2
+T (ix)− a2

−T (ix)

=a1
+T (x)− a1

−T (x) + ia2
+T (x)− ia2

−T (x)

=(a1
+ − a1

− + ia2
+ − ia2

−)T (x) = aT (x)

for all a ∈ A and all x ∈ AH. Hence

T (ax + by) = T (ax) + T (by) = aT (x) + bT (y)

for all a, b ∈ A and all x, y ∈ AH. So the unique R-linear operator
T : AH → AH is an A-linear operator satisfying (i), as desired. ¤

Corollary 2.2. Let p < 1 and F : AH → AH a mapping such
that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ||x||p + ||y||p

for all a ∈ A+
1
2
∪ {i} and all x, y ∈ AH \ {0}. If F (tx) is continuous

in t ∈ R for each fixed x ∈ AH, then there exists a unique A-linear
operator T : AH → AH such that

‖F (x)− F (0)− T (x)‖ ≤ 3 + 3p

3− 3p
||x||p

for all x ∈ AH \ {0}.
Proof. Define ϕ : AH\{0}×AH\{0} → [0,∞) by ϕ(x, y) = ||x||p +

||y||p, and apply Lemma 2.1. ¤

From now on, let F,G : AH → AH be mappings such that F (3nx) =
3nF (x) and G(3nx) = 3nG(x) for all positive integers n and all x ∈ AH.

Theorem 2.3. Let F, G : AH → AH be mappings such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y),

‖2G(ax +
1
2
y)− 2aG(x)−G(y)‖ ≤ ϕ(x, y)
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for all a ∈ A+
1
2
∪ {i} and all x, y ∈ AH \ {0}. Assume that F (tx)

and G(tx) are continuous in t ∈ R for each fixed x ∈ AH. Then the
mappings F, G : AH → AH are A-linear operators. Furthermore,

(1) if the mappings F, G : AH → AH satisfy the inequalities

‖F ◦G(x)− x‖ ≤ ϕ(x, x),

‖G ◦ F (x)− x‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping G is the inverse of the map-
ping F ,

(2) if the mapping F : AH → AH satisfies the inequality

‖F (x)− F ∗(x)‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping F : AH → AH is a self-adjoint
operator,

(3) if the mapping F : AH → AH satisfies the inequality

‖F ◦ F ∗(x)− F ∗ ◦ F (x)‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping F : AH → AH is a normal
operator,

(4) if the mapping F : AH → AH satisfies the inequalities

‖F ◦ F ∗(x)− x‖ ≤ ϕ(x, x),

‖F ∗ ◦ F (x)− x‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping F : AH → AH is a unitary
operator, and

(5) if the mapping F : AH → AH satisfies the inequalities

‖F ◦ F (x)− F (x)‖ ≤ ϕ(x, x),

‖F ∗(x)− F (x)‖ ≤ ϕ(x, x)

for all x ∈ AH, then the mapping F : AH → AH is a projection.
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Proof. Let a = 1
2 ∈ A+

1
2

in the statement. By the same reasoning
as in the proof of Lemma 2.1, there exists a unique A-linear operator
L : AH → AH satisfying

(ii) ‖G(x)−G(0)− L(x)‖ ≤ 1
3
(ϕ̃(x,−x) + ϕ̃(−x, 3x))

for all x ∈ AH \ {0}. The A-linear operator L : AH → AH is given by

L(x) = lim
n→∞

G(3nx)
3n

.

By the assumption,

T (x) = lim
n→∞

F (3nx)
3n

= lim
n→∞

3nF (x)
3n

= F (x),

L(x) = lim
n→∞

G(3nx)
3n

= lim
n→∞

3nG(x)
3n

= G(x)

for all x ∈ AH, where the mapping T : AH → AH is given in the proof
of Lemma 2.1. Hence the A-linear operators T and L are the mappings
F and G, respectively. So the mappings F, G : AH → AH are A-linear
operators.

(1) By the assumption,

‖F ◦G(3nx)− 3nx‖ ≤ ϕ(3nx, 3nx),

‖G ◦ F (3nx)− 3nx‖ ≤ ϕ(3nx, 3nx)

for all positive integers n and all x ∈ AH. Thus

3−n‖F ◦G(3nx)− 3nx‖ → 0,

3−n‖G ◦ F (3nx)− 3nx‖ → 0

as n →∞ for all x ∈ AH. Hence

F ◦G(x) = lim
n→∞

F ◦G(3nx)
3n

= x,

G ◦ F (x) = lim
n→∞

G ◦ F (3nx)
3n

= x
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for all x ∈ AH. So the mapping G is the inverse of the mapping F .
(2) By the assumption,

‖F (3nx)− F ∗(3nx)‖ ≤ ϕ(3nx, 3nx)

for all positive integers n and all x ∈ AH. Thus 3−n‖F (3nx) −
F ∗(3nx)‖ → 0 as n →∞ for all x ∈ AH. Hence

F (x) = lim
n→∞

F (3nx)
3n

= lim
n→∞

F ∗(3nx)
3n

= F ∗(x)

for all x ∈ AH. So the mapping F is a self-adjoint operator.
The proofs of the others are similar to the proofs of (1) and (2). ¤

Given a locally compact abelian group G and a multiplier ω on
G, one can associate to them the twisted group C∗-algebra C∗(G,ω).
C∗(Zm, ω) is said to be a noncommutative torus of rank m and de-
noted by Aω. The multiplier ω determines a subgroup Sω of G, called
its symmetry group, and the multiplier is called totally skew if the
symmetry group Sω is trivial. And Aω is called completely irrational
if ω is totally skew (see [1]). It was shown in [1] that if G is a locally
compact abelian group and ω is a totally skew multiplier on G, then
C∗(G,ω) is a simple C∗-algebra. It was shown in [2, Theorem 1.5]
that if Aω is a completely irrational noncommutative torus, then Aω

has real rank 0, where “real rank 0” means that the set of invertible
self-adjoint elements is dense in the set of self-adjoint elements (see [4,
6]).

We prove the Hyers-Ulam-Rassias stability of a generalized Jensen’s
equation in Hilbert module over a unital C∗-algebra of real rank 0.

Theorem 2.4. Let A have real rank 0, and F, G : AH → AH
mappings such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y),

‖2G(ax +
1
2
y)− 2aG(x)−G(y)‖ ≤ ϕ(x, y)

for all a ∈ (Ain ∩ A+
1
2
) ∪ {i} and all x, y ∈ AH \ {0}. Assume that

(iii) F (ax) and G(ax) are continuous in a ∈ A+
1
2
∪ R for each fixed
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x ∈ AH. Then the mappings F, G : AH → AH are A-linear operators.
Furthermore, the properties, given in the statement of Theorem 2.3,
hold.

Proof. By the same reasoning as in the proof of Lemma 2.1, there
exists a unique R-linear operator T : AH → AH satisfying (i), and

(1) T (ax) = aT (x)

for all a ∈ (Ain ∩A+
1
2
) ∪ {i} and all x ∈ AH \ {0}.

Let b ∈ A+
1
2
\ Ain. Since Ain ∩ Asa is dense in Asa, there exists a

sequence {bm} in Ain ∩ Asa such that bm → b as m → ∞. Put cm =
1

2|bm|bm. Then cm → 1
2|b|b = b as m →∞ and cm ∈ Ain∩Asa∩A 1

2
. Put

am =
√

cm
∗cm. Then am → 1

2|b|b = b as m →∞ and am ∈ Ain ∩ A+
1
2
.

Thus there exists a sequence {am} in Ain ∩ A+
1
2

such that am → b as
m →∞, and by (iii)

(2) lim
m→∞

T (amx) = lim
m→∞

F (amx) = F ( lim
m→∞

amx) = F (bx) = T (bx)

for all x ∈ AH. By (1),

(3) ‖T (amx)− bT (x)‖ = ‖amT (x)− bT (x)‖ → ‖bT (x)− bT (x)‖ = 0

as m →∞. By (2) and (3),

‖T (bx)− bT (x)‖ ≤‖T (bx)− T (amx)‖+ ‖T (amx)− bT (x)‖
(4)

→0 as m →∞
for all x ∈ AH. By (1) and (4), T (ax) = aT (x) for all a ∈ A+

1
2
∪ {i}

and all x ∈ AH.
Similarly, one can show that there exists a unique R-linear operator

L : AH → AH satisfying (ii) such that L(ax) = aL(x) for all a ∈
A+

1
2
∪ {i} and all x ∈ AH.

The rest of the proof is the same as in the proofs of Lemma 2.1
and Theorem 2.3. So the mappings F, G : AH → AH are A-linear
operators, and the properties, given in the statement of Theorem 2.3,
hold. ¤

We prove the Hyers-Ulam-Rassias stability of another generalized
Jensen’s equation in a Hilbert module over a unital C∗-algebra.
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Theorem 2.5. Let F, G : AH → AH be mappings such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y),

‖2G(ax +
1
2
y)− 2aG(x)−G(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1
2
∪{i} and all x, y ∈ AH\{0}. Assume that F (x) and G(x)

are continuous. Then the mappings F,G : AH → AH are bounded A-
linear operators. Furthermore, the properties, given in the statement
of Theorem 2.3, hold.

Proof. By the same reasoning as in the proof of Theorem 2.3, the
mappings F, G : AH → AH are A-linear operators.

Since the A-linear operators F, G : AH → AH are continuous, the
A-linear operators F, G : AH → AH are bounded (see [5, Proposi-
tion II.1.1]). By the same reasoning as the proof of Theorem 2.3, the
properties, given in the statement of Theorem 2.3, hold, as desired. ¤

Corollary 2.6. Let A have real rank 0, and F, G : AH → AH
mappings such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y),

‖2G(ax +
1
2
y)− 2aG(x)−G(y)‖ ≤ ϕ(x, y)

for all a ∈ (Ain ∩A+
1
2
)∪{i} and all x, y ∈ AH\{0}. Assume that F (x)

and G(x) are continuous. Then the mappings F, G : AH → AH are
bounded A-linear operators. Furthermore, the properties, given in the
statement of Theorem 2.3, hold.

Proof. By the same reasoning as in the proof of Theorem 2.4, the
mappings F, G : AH → AH are A-linear operators.

By the same reasoning as in the proof of Theorem 2.5, the A-linear
operators F, G : AH → AH are bounded, and the properties, given in
the statement of Theorem 2.3, hold. ¤

Now we prove the Hyers-Ulam-Rassias stability of another general-
ized Jensen’s equation in a Hilbert module over a unital C∗-algebra.
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Theorem 2.7. Let F, G : AH → AH be mappings such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y),

‖2G(ax +
1
2
y)− 2aG(x)−G(y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1
2
∪ {i} ∪ R+ and all x, y ∈ AH \ {0}. Then the mappings

F,G : AH → AH are A-linear operators. Furthermore, the properties,
given in the statement of Theorem 2.3, hold.

Proof. By the same reasoning as in the proof of Lemma 2.1, there
exist unique additive mappings T, L : AH → AH satisfying (i) and (ii),
respectively.

By the same method as in the proof of Lemma 2.1, one can show
that

T (ax) = aT (x)

for all a ∈ A+
1
2
∪ {i} ∪ R+ and all x ∈ AH \ {0}. So T (ax) = aT (x)

for all a ∈ (A+ \ {0}) ∪ {i} and all x ∈ AH. Since T is additive,
T (x) = T (x − y + y) = T (x − y) + T (y) and T (x − y) = T (x) − T (y)
for all x, y ∈ AH. So

T (ax) =T (a1
+x− a1

−x + ia2
+x− ia2

−x)

=(a1
+ − a1

− + ia2
+ − ia2

−)T (x)

=aT (x)

for all a ∈ A and all x ∈ AH, where a1
+, a1

−, a2
+, and a2

− are as
defined in the proof of Theorem 2.3. Hence

T (ax + by) = T (ax) + T (by) = aT (x) + bT (y)

for all a, b ∈ A and all x, y ∈ AH. So the unique additive mapping
T : AH → AH is an A-linear operator satisfying (i).

Similarly, one can show that the unique additive mapping L : AH →
AH is an A-linear operator satisfying (ii).

The rest of the proof is the same as in the proofs of Lemma 2.1
and Theorem 2.3. So the mappings F, G : AH → AH are A-linear
operators, and the properties, given in the statement of Theorem 2.3,
hold. ¤

Combining Theorem 2.7 and Theorem 2.4 yields the following.
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Corollary 2.8. Let A have real rank 0, and F, G : AH → AH
mappings such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y),

‖2G(ax +
1
2
y)− 2aG(x)−G(y)‖ ≤ ϕ(x, y)

for all a ∈ (Ain ∩ A+
1
2
) ∪ {i} ∪ R+ and all x, y ∈ AH \ {0}. Assume

that F (ax) and G(ax) are continuous in a ∈ A+
1
2

for each fixed x ∈
AH. Then the mappings F, G : AH → AH are A-linear operators.
Furthermore, the properties, given in the statement of Theorem 2.3,
hold.

Proof. By the same method as in the proof of Lemma 2.1, one can
show that there exist unique additive mappings T, L : AH → AH
satisfying (i) and (ii), respectively, and that

T (ax) = aT (x)

for all a ∈ R+ and all x ∈ AH \ {0}. Since T is additive, T (x) =
T (x − y + y) = T (x − y) + T (y) and T (x − y) = T (x) − T (y) for all
x, y ∈ AH. So the unique additive mapping T : AH → AH is R-linear.

Similarly, one can show that the unique additive mapping L : AH →
AH is R-linear.

The rest of the proof is similar to the proof of Theorem 2.4. So the
mappings F, G : AH → AH are A-linear operators, and the properties,
given in the statement of Theorem 2.3, hold. ¤

3. Stability of other generalized Jensen’s equations
in a Hilbert module over a C∗-algebra

In this section, let ϕ : AH \ {0} × AH \ {0} → [0,∞) be a function
such that

ϕ̃(x, y) :=
∞∑

k=0

3kϕ(3−kx, 3−ky) < ∞.
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Lemma 3.1. Let F : AH → AH be a mapping such that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ϕ(x, y)

for all a ∈ A+
1
2
∪ {i} and all x, y ∈ AH \ {0}. Assume that F (x) is

continuous, and that limn→∞ 3nF (3−nx) converges uniformly on AH.
Then there exists a unique bounded A-linear operator T : AH → AH
such that

(iv) ‖F (x)− F (0)− T (x)‖ ≤ ϕ̃(
x

3
,
−x

3
) + ϕ̃(

−x

3
, x)

for all x ∈ AH \ {0}.
Proof. Let a = 1

2 ∈ A+
1
2

in the statement. By [11, Theorem 6], there
exists a unique additive mapping T : AH → AH satisfying (iv). The
additive mapping T : AH → AH was given by

T (x) = lim
n→∞

3nF (3−nx)

for all x ∈ AH\{0}. The additive mapping T given in the proof of [11,
Theorem 6] is similar to the additive mapping T given in the proof of
[14, Theorem]. By the same reasoning as the proof of [14, Theorem], it
follows from the assumption that F (tx) is continuous in t ∈ R for each
fixed x ∈ AH that the additive mapping T : AH → AH is R-linear.

By the same method as in the proof of Lemma 2.1, one can show
that

T (2ax) = lim
n→∞

3nF (3−n2ax) = lim
n→∞

3n2aF (3−nx) = 2aT (x)

for all a ∈ A+
1
2
∪{i} and all x ∈ AH\{0}, and that the unique R-linear

operator T : AH → AH is an A-linear operator satisfying (iv). But by
the assumption, the A-linear operator T : AH → AH is continuous. So
the A-linear operator T : AH → AH is bounded (see [5, Proposition
II.1.1]), as desired. ¤



Generalized Jensen’s equations in a Hilbert Module 147

Corollary 3.2. Let p > 1 and F : AH → AH a mapping such
that

‖2F (ax +
1
2
y)− 2aF (x)− F (y)‖ ≤ ||x||p + ||y||p

for all a ∈ A+
1
2
∪ {i} and all x, y ∈ AH \ {0}. Assume that F (x) is

continuous, and that limn→∞ 3nF (3−nx) converges uniformly on AH.
Then there exists a unique bounded A-linear operator T : AH → AH
such that

‖F (x)− F (0)− T (x)‖ ≤ 3p + 3
3p − 3

||x||p

for all x ∈ AH \ {0}.
Proof. Define ϕ : AH\{0}×AH\{0} → [0,∞) by ϕ(x, y) = ||x||p +

||y||p, and apply Lemma 3.1. ¤

Under the assumption that F, G : AH → AH are mappings such
that F (3−nx) = F (x)

3n and G(3−nx) = G(x)
3n for all positive integers n

and all x ∈ AH, one can obtain similar results to Theorems 2.3, 2.4,
2.5, 2.7 and Corollaries 2.6, 2.8.
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