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AN APPLICATION OF CRITICAL POINT THEORY TO

THE NONLINEAR HYPERBOLIC SYSTEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the existence of multiple nontrivial so-
lutions u(x, t) for a perturbation b[(ξ−η+2)+−2] of the hyperbolic
system with Dirichlet boundary condition

(0.1)
Lξ = µ[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

Lη = ν[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

where u+ = max{u, 0}, µ, ν are nonzero constants. Here L is the
wave operator in R2 and the nonlinearity (µ − ν)[(ξ − η + 2)+ − 2]
crosses the eigenvalues of the wave operator.

1. Introduction

Let L be the wave operator in R2, Lu = utt − uxx. In this paper we
investigate the existence of solutions u(x, t) for a perturbation b[(ξ +η +
1)+ − 1] of the hyperbolic system with Dirichlet boundary condition

(1.1)

Lξ = µ[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

Lη = ν[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t),

where u+ = max{u, 0}, µ, ν are nonzero constants and the nonlinearity
(µ− ν)[(ξ − η + 2)+ − 2] crosses the eigenvalues of the wave operator.
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The following type nonlinear equation with Dirichlet boundary con-
dition was studied by many authors.

(1.2)
utt − uxx = b[(u + 2)+ − 2] in (−π

2
,
π

2
)× R,

u(±π

2
, t) = 0, u(x, t + π) = u(x, t) = u(−x, t).

In [6] Lazer and McKenna point out that this kind of nonlinearity
b[(u + 2)+ − 2] can furnish a model to study traveling waves in suspen-
sion bridges. So the nonlinear equation with jumping nonlinearity have
been extensively studied by many authors. For fourth elliptic equation
Tarantello [11] , Micheletti and Pistoia [8][9] proved the existence of non-
trivial solutions used degree theory and critical points theory separately.
For one-dimensional case Lazer and McKenna [7] proved the existence
of nontrivial solution by the global bifurcation method. For this jump-
ing nonlinearity we are interest in the multiple nontrivial solutions of
the equation. Here we used variational reduction method to find the
nontrivial solutions of problem (1.2).

The organization of this paper is as following. In section 2, we inves-
tigate some properties of the Hilbert space spanned by eigenfunctions
of the wave operator. We show that only the trivial solution exists
for the steady state problem of (1.2) when −3 < b < 1. In section
3, we investigate the existence of multiple solutions of (1.2), by using
critical point theory, when −7 < b < −3. In section 4, we investi-
gate the existence of multiple nontrivial solutions u(x, t) for the hyper-
bolic system with Dirichlet boundary condition when the nonlinearity
(µ− ν)[(ξ − η + 2)+ − 2] crosses the eigenvalues of the wave operator.

2. Trivial solution problem

Let L be the wave operator in R2, i.e., Lu = utt−uxx. The eigenvalue
problem

(2.1)
Lu = λu in (−π

2
,
π

2
)× R,

u(±π

2
, t) = 0, u(x, t + π) = u(x, t) = u(−x, t),

has infinitely many eigenvalues λmn = (2n+1)2−4m2 (m,n = 0, 1, 2, ...)
and corresponding normalized eigenfunctions φmn, ψmn(m,n ≥ 0) given
by
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φ0n =

√
2

π
cos (2n + 1)x for n ≥ 0,

φmn =
2

π
cos 2mt · cos (2n + 1)x for m > 0, n ≥ 0,

ψmn =
2

π
sin 2mt · cos (2n + 1)x for m > 0, n ≥ 0.

Let n be fixed and define

λ+
n = infm{λmn : λmn > 0} = 4n + 1,

λ−n = supm{λmn : λmn < 0} = −4n− 3.

Then we obtain that lim
n→∞

λ+
n = +∞, lim

n→−∞
λ−n = −∞. Thus it is easy to

check that the only eigenvalues in the interval (-15, 9) are given by

λ32 = −11 < λ21 = −7 < λ10 = −3 < λ00 = 1 < λ11 = 5.

Let Ω be the square (−π/2, π/2)×(−π/2, π/2) and H0 the Hilbert space
defined by

H0 = {u ∈ L2(Ω) : u is even in x}.
The set of functions {φmn, ψmn} is an orthonormal basis in H0. Let

us denote an element u in H0 as

u =
∑

(hmnφmn + kmnψmn),

and we define a subspace H of H0 as

H = {u ∈ H0 :
∑

|λmn|(h2
mn + k2

mn) < ∞}.
Then this is a complete normed space with a norm

‖u‖H = [
∑

|λmn|(h2
mn + k2

mn)]
1
2 .

Since |λmn| ≥ 1 for all m,n, we have that
(i) ‖u‖H ≥ ‖u‖, where ‖u‖ denotes the L2 norm of u,
(ii)‖u‖ = 0 if and only if ‖u‖H = 0.

Define Lβu = Lu + βu. Then we have the following lemma.

Lemma 2.1. Let β ∈ R , β 6= −λmn (m,n ≥ 0). Then we have:

L−1
β is a bounded linear operator from H0 into H.
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Proof. Suppose that β 6= −λmn. Since lim
n→∞

λ+
n = +∞, lim

n→−∞
λ−n =

−∞, we know that the number of elements in the set {λmn : |λmn| < |β|}
is finite, where λmn is an eigenvalue of L. Let

u =
∑

(hmnφmn + kmnψmn).

Then

L−1
β u =

∑
(

1

λmn + β
hmnφmn +

1

λmn + β
kmnψmn).

Hence we have the inequality

‖L−1
β u‖H =

∑ |λmn|
|λmn + β|2 (h2

mn + k2
mn) ≤ C

∑
(h2

mn + k2
mn)

for some C > 0, which means that

‖L−1
β u‖H ≤ C1‖u‖, C1 =

√
C.

So L−1
β is a bounded linear operator from H0 to H.

Theorem 2.1. Let −3 < b < 1. Then equation

Lu = b[(u + 2)+ − 2]

has only the trivial solution in H0.

Proof. Since λ10 = −3 and λ00 = 1, let β = −1
2
(λ00 +λ10) = −1

2
(−3+

1) = 1. The equation is equivalent to

(2.2) u = (L + β)−1[(b + β)(u + 2)+ − β(u + 2)− − (b + β)],

where we use the equality u = u+ − u−.
By lemma 2.1 (L + β)−1 is a compact linear map from H0 into H0.

Therefore its L2 norm 1
2
. We note that

‖(b + β)[(u1 + 2)+ − (u2 + 2)+]− β[(u1 + 2)− − (u2 + 2)−]‖
≤ max{|b + β|, |β|}‖u1 − u2‖
<

1

2
(λ00 − λ10)‖u1 − u2‖

= 2‖u1 − u2‖
where we used the inequality |s+

1 − s+
2 |+ |s−1 − s−2 | ≤ |s1 + s2|.

So the right hand side of (2.2) defines a Lipschitz mapping of H0

into H0 with Lipschitz constant γ < 1. Therefore, by the contraction
mapping principle, there exists a unique solution u ∈ H0. Since u ≡ 0
is a solution of equation (2.2), u ≡ 0 is the unique solution.
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3. Critical point theory and nontrivial solutions

In this section we investigate the existence of multiple solutions of
(1.2) when −7 < b < −3. Then we define a functional on H by

J(u) =

∫

Ω

[
1

2
(−|ut|2 + |ux|2)− b

2
|(u + 2)+|2 + bu]dxdt.

So J is well-defined in H and the solutions of (1.2) coincide with the
critical points of J(u). Now we investigate the property of functional J .

Lemma 3.1. (cf.[4]) J(u) is continuous and Frechet differentiable at
each u ∈ H with

DJ(u)v =

∫

Ω

(Lu− b(u + 2)+ + b)vdxdt, v ∈ H.

We shall use a variational reduction method to apply the mountain
pass theorem.

Let V = closure of span{φ10, ψ10} be the two-dimensional subspace
of H. Both of them have the same eigenvalue λ10. Then ‖v‖H =

√
3‖v‖

for v ∈ V . Let W be the orthogonal complement of V in H. Let
P : H → V denote that of H onto V and I − P : H → W denote that
of H onto W . Then every element u ∈ H is expressed by

u = v + w,

where v = Pu, w = (I − P )u.

Lemma 3.2. Let −7 < b < −3 and let v ∈ V be given. Then we have:
there exists a unique solution z ∈ W of equation

(3.1) Lz + (I − P )[−b(v + z + 2)+ + b] = 0 in W.

Let z = θ(v), then θ satisfies a uniform Lipschitz continuous on V with
respect to the L2 norm(also the norm ‖ · ‖H).

Proof. Choose β = 3 and let g(ξ) = (b+β)(ξ +2)+−β(ξ +2)−. Then
equation (3.1) can be written as

(3.2) z = (L + β)−1(I − P )[g(v + z)− (b + β)].

Since (L + β)−1(I − P ) is a self-adjoint, compact, linear map from
(I − P )H into itself, the eigenvalues of (L + β)−1(I − P ) in W are
(λ + β)−1, where λmn > 1 or λmn ≤ −7. Therefore ‖(L + β)−1(I −P )‖is
1
4
. Since

g(ξ1)− g(ξ2) ≤ max{|b + β|, |β|}|ξ1 − ξ2| < 4|ξ1 − ξ2|,
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the right-hand side of equation (3.2) defines a Lipschitz mapping if (I −
P )H0 into itself for fixed v ∈ V . By the contraction mapping principle
there exists a unique z ∈ (I−P )H0 (also z ∈ (I−P )H) for fixed v ∈ V .
Since (L + β)−1 is bounded from H to W there exsits a unique solution
z ∈ W of (3.1) for given v ∈ V .

Let

γ =
max{|b + β|, |β|}

4
.

Then 0 < γ < 1. If z1 = θ(v1) and z2 = θ(v2) for any v1, v2 ∈ V , then

‖z1 − z2‖ ≤ ‖(L + β)−1(I − P )‖ ‖(g(v1 + z1)− g(v2 + z2))‖
≤ 1

4
· 4γ‖(v1 + z1 + 2− (v2 + z2 + 2)‖

≤ γ(‖v1 − v2‖+ ‖z1 − z2‖).
Hence

‖z1 − z2‖ ≤ γ

1− γ
‖v1 − v2‖.

Since ‖(L + β)−1(I − P )‖H ≤ 1√
2
‖u‖,

‖z1 − z2‖H = ‖(L + β)−1(I − P )(g(v1 + z1)− g(v2 + z2))‖H

≤ 4√
2
(‖z1 − z2‖+ ‖v1 − v2‖)

≤ 4√
6
(

1

1− γ
)‖v1 − v2‖H .

Therefore θ is continuous on V with norm ‖ · ‖ and ‖ · ‖H .

Lemma 3.3. If J̃ : V → R is defined by J̃(v) = J(v + θ(v)), then J̃

is a continuous Frechet derivative DJ̃ with respect to V and

DJ̃(v)s = DJ(v + θ(v))(s) for all s ∈ V.

If v0 is a critical point of J̃ , then v0 + θ(v0) is a solution of (1.2) and
conversely every solution of (1.2) is of this form.

Proof. Let v ∈ V and set z = θ(v). If w ∈ W , then from (3.1)∫

Ω

−θ(v)twt + θ(v)xwx − b(v + θ(v) + 2)+w + bwdtdx = 0.

Since
∫
Ω

vtwt = 0 and
∫
Ω

vxwx = 0,

DJ(v + θ(v))(w) = 0 for all w ∈ W.
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Let W1,W2 be the two subspaces of H as defining following:

W1 = closure of span{φmn, ψmn|λmn ≤ −7},
W2 = closure of span{φmn, ψmn|λmn ≥ 1}.

Given v ∈ V and consider the function h : W1 ×W2 → defined by

h(w1, w2) = J(v + w1 + w2).

The function h has continuous partial Fréchet derivatives D1h and D2h
with respect to its first and second variables given by

D1h(w1, w2)(y1) = DJ(v + w1 + w2)(y1) for y1 ∈ W1,

D2h(w1, w2)(y2) = DJ(v + w1 + w2)(y2) for y2 ∈ W2.

Therefore let θ(v) = θ1(v) + θ2(v) with θ1(v) ∈ W1 and θ2(v) ∈ W2.
Then by Lemma 3.2

(3.3)
D1h(θ1(v), θ2(v))(y1) = 0, for y1 ∈ W1

D2h(θ1(v), θ2(v))(y2) = 0, for y2 ∈ W2.

If w2, y2 ∈ W2 and w1 ∈ W1, then

[Dh(w1, w2)−Dh(w1, y2)](w2 − y2)

= (DJ(v + w1 + w2)−DJ(v + w1 + y2))(w2 − y2)

=

∫

Ω

−|(w2 − y2)t|2 + |(w2 − y2)
2
x| − b[(v + w1 + w2 + 2)+

−(v + w1 + y2 + 2)+](w2 − y2)dtdx.

Since (s+ − t+))(s− t) ≥ 0 for any s, t ∈ R and −7 < b < −3, it is easy
to know that∫

Ω

−b[(v + w1 + w2 + 2)+ − (v + w1 + y2 + 2)+](w2 − y2)dxdt ≥ 0.

And ∫

Ω

[−|(w2 − y2)t|2 + (w2 − y2)
2
x]dtdx = ‖w2 − y2‖2

H ,

it follows that

(Dh(w1, w2)−Dh(w1, y2))(w2 − y2) ≥ ‖w2 − y2‖2
H .

Therefore, h is strictly convex with respect to the second variable. Simi-
larly, using the fact that −b(s+−t+)(s−t) ≤ −b(s−t)2 for any s, t ∈ R,if



156 Tacksun Jung and Q-Heung Choi

w1 and y1 are in W1 and w2 ∈ W2, then

(D1h(w1, w2)−D1h(y1, w2))(w1 − y1)

≤ −‖w1 − y1‖2
H + b‖w1 − y1‖2

≤ (−1− b

7
)‖w1 − y1‖2

H ,

where −7 < b < −3. Therefore, h is strictly concave with respect to the
first variable. From equation (3.3) it follows that

J(v + θ1(v) + θ2(v)) ≤ J(v + θ1(v) + y2) for any y2 ∈ W2,

J(v + θ1(v) + θ2(v)) ≥ J(v + y1 + θ2(v)) for any y1 ∈ W1,

with equality if and only if y1 = θ1(v), y2 = θ2(v).

Since h is strictly concave (convex) with respect to its first (second)
variable, Theorem 2.3 of [1] implies that J̃ is C1 with respect to v and

DJ̃(v)(s) = DJ(v + θ(v))(s), any s ∈ V.(3.4)

Suppose that there exists v0 ∈ V such that DJ̃(v0) = 0. From (3.4) it
follows that DJ(v0 + θ(v0))(v) = 0 for all v ∈ V . Then by Lemma 3.2 it
follows that DJ(v0+θ(v0))v = 0 for any v ∈ H. Therefore, u = v0+θ(v0)
is a solution of (1.2).

Conversely if u is a solution of (1.2) and v0 = Pu, then DJ̃(v0)v = 0
for any v ∈ H.

Lemma 3.4. Let −7 < b < −3. Then there exists a small open
neighborhood B of 0 in V such that v = 0 is a strict local minimum of
J̃ .

Proof. Since −7 < b < −3, problem (1.2) has a trivial solution u0 = 0
by theorem 2.1. Then we have 0 = u0 = v + θ(v). Since the subspace
W is orthogonal complement of subspace V , we get v = 0 and θ(v) = 0.
Furthermore θ(0) is the unique solution of equation (3.1) in W for v = 0.
Thus the trivial solution u0 is of the form u0 = 0+θ(0) and I+θ, where I
is an identity map on V , is continuous, it follows that there exists a small
open neighborhood B of 0 in V such that if v ∈ B then v + θ(v)+2 > 0.
By Lemma 3.2, θ(0) = 0 is the solution of (3.2) for any v ∈ B Therefore,
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if v ∈ B, then for z = θ(v) we have z = 0. Thus

J̃(v) = J(v + z)

=

∫

Ω

[
1

2
(−|(v + z)t|2 + |(v + z)x|2)− b

2
|(v + z + 2)+|2

+b(v + z)]dtdx

=

∫

Ω

[
1

2
(−|vt|2 + |vx|2)− b

2
(v + 2)2 + bv]dtdx

=

∫

Ω

[
1

2
(−|vt|2 + |vx|2)− b

2
v2 − b

2
]dtdx,

If v ∈ V , then Lv = −3v.Therefore in B,

J̃(v) = J̃(v)− J̃(0)

=

∫

Ω

[
1

2
(−|vt|2 + |vx|2)− b

2
v2]dtdx

=
1

2
(−3− b)

∫

Ω

v2dtdx ≥ 0,

where J̃(0) =
∫
Ω
− b

2
dtdxand −7 < b < −3. It follows that v = 0 is a

strict local point of minimum of J̃ .

Proposition 1. If −7 < b < 1 , then the equation Lu − bu+ = 0
admits only the trivial solution u = 0 in H0.

Proof. H1 = span{cos x cos 2mt,m ≥ 0} is invariant under L and
under the map u 7→ bu+. So the spectrum σ1 of L retracted to H1

contains λ10 = −3 in (−7, 1). the spectrum σ2 of L retracted to H2 = H⊥
1

contains λ10 = −3 in (−7, 1). From the symmetry theorem in [5] , any
solution y(t)cosx of this equation satisfies y

′′
+y−by+ = 0.This nontrivial

periodic solution is periodic with periodic π+
π√−b + 1

6= π. This shows

that there is no nontrivial solution of Lv − bv+ = 0.

Lemma 3.5. Let −7 < b < −3. Then function J̃ , defined on V ,
satisfies the Palais-Smale condition.

Proof. Let {vn} ⊂ V be a Palais-Smale sequence that is J̃(vn) is
bounded and DJ̃(vn) → 0 in V . since V is two-dimensional it is enough
to prove that {vn} is bounded in V .
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Let un be the solution of (1.2) with un = vn + θ(vn) where vn ∈ V .
So

Lun − b(un + 2)+ + b = DJ(un) in H.

By contradiction we suppose that ‖vn‖ → +∞, also ‖un‖ → +∞. Di-
viding by ‖un‖ and taking wn = un

‖un‖ we get

(3.5) Lwn − b(wn +
1

‖un‖)+ +
b

‖un‖ =
(DJ(un))

‖un‖ → 0.

Since ‖wn‖ = 1 we get : wn → w0 weakly in H0. By L−1 is a compact
operator, passing to a subsequence we get : wn → w0 strongly in H0.
Taking the limit of both sides of (3.5), it follows

Lw0 − bw+
0 = 0,

with ‖w0‖ 6= 0. This contradicts to the fact that for −7 < b < −3 the
following equation

Lu− bu+ = 0 in H0

has only the trivial solution by Proposition 1. Hence{vn} is bounded in
V .

We now define the functional on H

J∗(u) =

∫

Ω

[−1

2
(−|ut|2 + |ux|2)− b

2
|u+|2dxdt.

The critical points of J∗(u) coincide with solutions of the equation

Lu− bu+ = 0 in H0

The above equation has only the trivial solution and hence J∗(u) has
only one critical point u = 0.

Given v ∈ V , let θ∗(v) = θ(v) ∈ W be the unique solution of the
equation

Lz + (I − P )[−b(v + z + 2)+ + b] = 0 in W,

where −7 < b < −3. Let us define the reduced functional J̃∗(v) on V
by J(v + θ∗(v)). We note that we can obtain the same results as Lemma
3.1 and Lemma 3.2 when we replace θ(v) and J̃(v) by θ∗(v) and J̃∗(v).
We also note that, for −7 < b < −3, J̃∗(v) has only one critical point
v = 0.

Lemma 3.6. Let −7 < b < −3. Then we have: J̃∗(u) < 0 for all
v ∈ V with v 6= 0.

The proof of this lemma can be found in [4].
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Lemma 3.7. Let −7 < b < −3. Then we have

lim
‖v‖→∞

J̃(v) → −∞

for all v ∈ V (certainly for also the norm ‖ · ‖H).

Proof. Suppose that it is not true that

lim
‖v‖→∞

J̃(v) → −∞.

Then there exists a sequence (vn) in V and a constant C such that

lim
n→∞

‖vn‖ → ∞
and

J̃(vn) =

∫

Ω

(
1

2
L(vn + θ(vn)) · (vn + θ(vn))− b

2
|(vn + θ(vn) + 1)+|2

+b(vn + θ(vn))dtdx ≥ C.

For given vn ∈ V let wn = θ(vn) be the unique solution of the equation

(3.6) Lw + (I − P )[−b(vn + w + 2)+ + b] = 0 in W.

Let zn = vn + wn, v∗n =
vn

‖vn‖ , w∗
n =

wn

‖vn‖ . Then z∗n = v∗n + w∗
n. By

dividing ‖vn‖ we have

w∗
n = L−1(I − P )

(
b

(
vn + wn + 2

‖vn‖
)+

− b

‖vn‖

)
in W.

By lemma 3.2 wn = θ(vn) is Lipschitz continuous on V . So sequence{
wn + vn

‖vn‖
}

is bounded in H. Since lim
n→∞

1

‖vn‖ = 0, lim
n→∞

b

‖vn‖ = 0, it

follows that b

(
vn + wn + 2

‖vn‖
)+

− b

‖vn‖ is bounded in H. Since L−1 is

a compact operator there is a subsequence of w∗
n converge to some w∗

in W , denote by itself. Since V is two-dimensional space, assume that
sequence (v∗n) converges to v∗ ∈ V with ‖v∗‖ = 1. Therefore, we can get
that sequence (z∗n) converges to an element z∗ in H.

On the other hand, since J̃(vn) ≥ C, dividing this inequality by ‖vn‖2,
we get

(3.7)

∫

Ω

1

2
L(z∗n) · z∗n −

b

2
((z∗n +

2

‖vn‖)+)2 + b
z∗n
‖vn‖dtdx ≥ C

‖vn‖2
.
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By lemma 3.2 it follows that for any y ∈ W

(3.8)

∫

Ω

[−(zn)tyt + (zn)xyx − b(zn + 2)+y + by]dtdx = 0.

If we set y = wn in (3.8) and divide by ‖vn‖2, then we obtain

(3.9)

∫

Ω

[−|(w∗
n)t|2 + |(w∗

n)x|2 − b(z∗n)+w∗
n +

b

‖vn‖w∗
n]dtdx = 0.

Let y ∈ W be arbitrary. Dividing (3.8) by ‖vn‖ and letting n → ∞,
we obtain

(3.10)

∫

Ω

[−(z∗)tyt + (z∗)xyx − b(z∗)+y]dtdx = 0.

Then (3.10) can be written in the form DJ̃∗(v∗ + w∗)(y) = 0 for all
y ∈ W . Hence by w∗ = θ(v∗). Letting n →∞ in (3.9), We obtain

lim
n→∞

∫

Ω

(−|(w∗
n)t|2 + |(w∗

n)x|2)dtdx

= lim
n→∞

∫

Ω

b(z∗n)+w∗
n −

b

‖vn‖w∗
ndtdx

=

∫

Ω

b(z∗)+w∗dtdz

=

∫

Ω

(−(z∗)t(w
∗)t + (z∗)x(w

∗)x)dtdx

=

∫

Ω

(−|(w∗)t|2 + |(w∗)x|2)dtdx,

where we have used (3.10). Hence

lim
n→∞

∫

Ω

[−|(z∗n)t|2 + |(z∗n)x|2]dtdx =

∫

Ω

[−|(z∗)t|2 + |(z∗)x|2]dtdx.

Letting n →∞ in (3.7), we obtain

J̃∗(v∗) =

∫

Ω

[
1

2
(−|(z∗)t|2 + |(z∗)x|2) +

b

2
|(z∗)+|2]dtdx ≥ 0.

Since ‖v∗‖ = 1, this contradicts to the fact that J̃∗(v) < 0 for all v 6= 0.
This proves that lim

‖v‖→∞
J̃(v) → −∞.

Now we state the main result in this paper:
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Theorem 3.1. Let −7 < b < −3. Then the equation

utt − uxx = b[(u + 2)+ − 2] in (−π

2
,
π

2
)× R,

u(±π

2
, t) = 0, u(x, t + π) = u(x, t).

has at least three solutions, two of which are nontrivial solutions.

Proof. We know that u = 0 is the trivial solution of problem (1.2).
Then v = 0 is a critical point of functional J̃ . Next we want to find
others critical points of J̃ which are corresponding to the solutions of
problem (1.2).

By Lemma 3.4, there exists a small open neighborhood B of 0 in
V such that v = 0 is a strict local point of minimum of J̃ . Since

lim
‖v‖H→∞

J̃(v) → −∞ from lemma 3.7 and V is a two-dimensional space,

there exists a critical point v0 ∈ V of J̃ such that

J̃(v0) = max
v∈V

J̃(v).

Let Bv0 be an open neighborhood of v0 in V such that B∩Bv0 = ∅. Since
lim

‖v‖H→∞
J̃(v) → −∞, we can choose v1 ∈ V \(B ∪Bv0) such that J̃(v1) <

J̃(0). Since J̃ satisfies the Palais-Smale condition, by the Mountain Pass
Theorem, there is a critical value

c = inf
γ∈Γ

sup
γ

J̃(v)

where Γ = {γ ∈ C([0, 1] , E)|γ(0) = 0, γ(1) = v0}.
If J̃(v0) 6= c, then there exists a critical point v of J̃ at level c such

that v 6= v0, 0 ( since c 6= J̃(v0) and c > J̃(0) ). Therefore, in case
J̃(v0) 6= c, equation (1.2) has also at least 3 critical points 0, v0, v.

If J̃(v0) = c, then define

c′ = inf
γ∈Γ′

sup
γ

J̃(v)

where Γ′ = {γ ∈ Γ : γ ∩Bv0 = ∅}. Hence

c = inf
γ∈Γ

sup
γ

J̃(v) ≤ inf
γ∈Γ′

sup
γ

J̃(v) ≤ max
v∈V

J̃(v) = c.

That is c = c′. By contradiction assume Kc = {v ∈ V |J̃(v) = c,DJ̃(v) =
0} = {v0}. Use the functional J̃ for the deformation theorem (theorem
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4.1) and taking ε < 1
2
(c− J̃(0)). We choose γ ∈ Γ′ such that supγ J̃ ≤ c.

From the deformation theorem (theorem 4.1) η(1, ·) ◦ γ ∈ Γ and

c = inf
γ∈Γ

sup
γ

J̃(v) ≤ sup
η(1,·)◦γ

J̃(v) ≤ c− ε,

which is a contradiction. Therefore, there exists a critical point v of J̃
at level c such that v 6= v0, 0, which means that the equation (1.2) has
at least three critical points. Since ‖v‖H , ‖v0‖H 6= 0, these two critical
points coincide with two nontrivial period solutions of problem (1.2).

4. Multiple nontrivial solutions for the system

In this section we investigate the existence of multiple nontrivial solu-
tions (ξ, η) for a perturbation b[(ξ−η+2)+−2] of the hyperbolic system
with Dirichlet boundary condition

(4.1)

Lξ = µ[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

Lη = ν[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t),

where u+ = max{u, 0}, µ, ν are nonzero constants. Here we assume that
−7 < µ− ν < −3.

Theorem 4.1. Let µ, ν be nonzero constants. Assume that −7 <
µ − ν < −3. Then hyperbolic system (4.1) has at least three solutions
(ξ, η), two of which are nontrivial solutions.

Proof. From problem (4.1) we get that Lξ = µ
ν
Lη. By Theorem 2.1,

the problem

(4.2)
Lu = 0 in (−π

2
,
π

2
)× R,

u(±π

2
, t) = 0, u(x, t + π) = u(x, t) = u(−x, t),

has only the trivial solution. So the solution (ξ, η) of problem (4.1)
satisfies ξ = µ

ν
η. On the other hand, from problem (4.1) we get the

equation
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(4.3)

L(ξ − η) = (µ− ν)[(ξ − η + 2)+ − 2] in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t).

Let w = ξ − η. Then the above equation is equivalent to

(4.4)
Lw = (µ− ν)[(w + 2)+ − 2] in (−π

2
,
π

2
)× R,

w(±π

2
, t) = 0, w(x, t + π) = w(x, t) = w(−x, t).

When −7 < µ − ν < −3, the above equation has at least three
solutions , two of which are nontrivial solutions, say w1, w2. Hence we
get the solutions (ξ, η) of problem (4.1) from the following systems:

(4.5)

ξ − η = 0 in (−π

2
,
π

2
)× R,

ξ =
µ

ν
η in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t),

(4.6)

ξ − η = w1 in (−π

2
,
π

2
)× R,

ξ =
µ

ν
η in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t),

(4.7)

ξ − η = w2 in (−π

2
,
π

2
)× R,

ξ =
µ

ν
η in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t).
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From (4.5) we get the trivial solution (ξ, η) = (0, 0). From (4.6), (4.7)
we get the nontrivial solutions (ξ, η).

Therefore system(4.1) has at least three solutions (ξ, η), two of which
are nontrivial solutions.

By using the similar method as in the proof of Theorem 4.1, we have
the following corollary.

Corollary 1. Let µ, ν be nonzero constants and 1− µ
ν
6= 0. Assume

that −7 < µ + ν < −3. Then the hyperbolic system

(4.8)

Lξ = µ[(ξ + η + 2)+ − 2] in (−π

2
,
π

2
)× R,

Lη = ν[(ξ + η + 2)+ − 2] in (−π

2
,
π

2
)× R,

ξ(±π

2
, t) = 0, ξ(x, t + π) = ξ(x, t) = ξ(−x, t),

η(±π

2
, t) = 0, η(x, t + π) = η(x, t) = η(−x, t),

has at least three solutions (ξ, η), two of which are nontrivial solutions.
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