RIORDAN MATRICES WITH THE SPECIAL A-SEQUENCES IN THE BELL SUBGROUP

Hana Kim

Abstract. In this paper, we study the Riordan matrices with the A-sequence $(1,1, \ldots, 1,0, \ldots)$ where 1 's appear in m times. As a result, we obtain new Riordan matrices and give their lattice path interpretations.

1. Introduction

The concept of the Riordan group $(\mathcal{R}, *)$ has been introduced by Shapiro et. al. [5]. A Riordan matrix $D=\left\{d_{n, k}\right\}_{n, k \in \mathrm{~N}_{0}}$ where $\mathrm{N}_{0}:=$ $\{0,1,2,3, \ldots\}$ is defined by a pair of formal power series $g(z)=g_{0}+$ $g_{1} z+g_{2} z^{2}+\ldots$ and $f(z)=f_{1} z+f_{2} z^{2}+\ldots$ with $g_{0} \neq 0$ and $f_{1} \neq 0$ such that the generic element is

$$
d_{n, k}=\left[z^{n}\right] g(z)(f(z))^{k},
$$

where $\left[z^{n}\right]$ is the coefficient operator. Then D is an infinite lower triangular matrix with nonzero diagonal entries. We denote a Riordan matrix by $D=(g(z), f(z))$. The concept of the Riordan matrix is useful to get some combinatorial sums and identities. If we give the operation $*$ being the usual matrix multiplication to the set of all Riordan matrices \mathcal{R} as follows :

$$
(g(z), f(z))(h(z), \ell(z))=(g(z) h(f(z)), \ell(f(z)))
$$

then $(\mathcal{R}, *)$ forms a group, which is called the Riordan group. The identity element is $I=(1, z)$ and the inverse element is given by $(g(z), f(z))^{-1}$ $=\left(\frac{1}{g(\bar{f}(z))}, \bar{f}(z)\right)$ where $\bar{f}(f(z))=f(\bar{f}(z))=z$. There are some important subgroups of the Riordan group [6]. In particular, we are interested

[^0]in the Bell subgroup B defined by
$$
B=\left\{\left.\left(\frac{f(z)}{z}, f(z)\right) \right\rvert\, f(z)=f_{1} z+f_{2} z^{2}+\ldots, f_{1} \neq 0\right\} .
$$

From now on, we will call the element in the Bell subgroup the Bell matrix.

Rogers [4] and Merlini et. al. [3] obtained a characterization of a Riordan matrix by some sequences as the following theorem(also see [1], [2]).

Theorem 1.1. Let $D=\left[d_{n, k}\right]$ be an infinite triangular matrix. Then D is a Riordan matrix if and only if there exist two sequences $A=$ $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ and $Z=\left\{z_{0}, z_{1}, z_{2}, \ldots\right\}$ with $a_{0} \neq 0, z_{0} \neq 0$ such that
(i) $d_{n+1, k+1}=\sum_{j=0}^{\infty} a_{j} d_{n, k+j}(k, n=0,1 \ldots)$,
(ii) $d_{n+1,0}=\sum_{j=0}^{\infty} z_{j} d_{n, j},(n=0,1, \ldots)$.

It is known that if $A_{D}(z)$ and $Z_{D}(z)$ are the generating functions of the A - and Z-sequences of a Riordan matrix $D=(g(z), f(z))$ respectively, then it can be proven that $f(z)$ and $g(z)$ are the solutions of the following functional equations :

$$
\begin{equation*}
f(z)=z A_{D}(f(z)), \quad \text { and } \quad g(z)=g(0) /\left(1-z Z_{D}(f(z))\right) \tag{1}
\end{equation*}
$$

A simple computation shows that if a Bell matrix has the A-sequence $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ then the Z-sequence is $\left\{a_{1}, a_{2}, \ldots\right\}$. Hence it suffices to consider A-sequence when we study a Bell matrix. Pascal matrix is an example of a Bell matrix with A-sequence $\{1,1,0, \ldots\}$. In this paper, more generally, we observe a Bell matrix D_{m} with A-sequence $A_{m}:=\{1, \ldots, 1,0, \ldots\}$ where 1 's appear in m times, $m \geq 3$. As a result, we give a combinatorial interpretation to D_{m} for $m \geq 1$.

2. Bell matrices with A-sequence A_{m}

Let us consider a sequence $A_{m}=\{1, \ldots, 1,0,0, \ldots\}$ where 1 's appear in m times. We denote a Bell matrix with the A-sequence A_{m} by $D_{m}=\left[d_{n, k}^{(m)}\right]_{n, k \in \mathrm{~N}_{0}}=\left(\frac{f_{m}(z)}{z}, f_{m}(z)\right)$. By the first equation in (1), $f_{m}(z)$ satiesfies

$$
\begin{equation*}
f_{m}(z)=z\left(1+f_{m}(z)+\ldots+\left(f_{m}(z)\right)^{m-1}\right) . \tag{2}
\end{equation*}
$$

It is easy to see that $D_{1}=(1, z)$ is the identity matrix, $D_{2}=$ $\left(\frac{1}{1-z}, \frac{z}{1-z}\right)$ is the Pascal matrix and $D_{3}=\left(\frac{f_{2}(z)}{z}, f_{2}(z)\right)$ is the directed animal matrix $(\mathrm{A} 064189)[7]$ where $f_{2}(z)=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z}$. For the case $m \geq 4, D_{m}$ is unknown. But it is known that the 0 -th column entry $d_{n, 0}^{(m)}$ of $D_{m}(m \geq 3)$ counts the number of Dyck n-paths with no $\underbrace{U U \ldots U}_{m} D$, i.e. no arrangement of consecutive m U's (See A001006, A036765, A036766, A036767 in [7]). Equivalently, $d_{n, 0}^{(m)}(n \geq 0, m \geq 3)$ can be interpreted by the number of all paths from $(0,0)$ to $(n, n-k)$ using the steps $H=(1,0)=\rightarrow$ and $V=(0,1)=\uparrow$ with no consecutive m V 's. Further, this interpretation can be expanded to $d_{n, k}^{(m)}$ for $n \geq k \geq 0$, $m \geq 1$.

Theorem 2.1. Let $D_{m}=\left[d_{n, k}^{(m)}\right]_{n, k \geq 0}$ be a Bell matrix with the A sequence $A_{m}=\{\underbrace{1, \ldots, 1}_{m}, 0,0, \ldots\}$ and $d_{0,0}^{(m)}=1$. Then, $d_{n, k}^{(m)}$ counts the number of all paths from $(0,0)$ to ($n, n-k$) using the horizontal step $H=(1,0)$ and the vertical step $V=(0,1)$ that has no consecutive m V 's, which do not pass through the line $y=x$ for $n \geq k \geq 0, m \geq 1$.

Proof. We fix $m \geq 1$. Since D_{m} is a Bell matrix with the A-sequence $A_{m}=\{\underbrace{1,1, \ldots, 1}_{m}, 0,0, \ldots\}$, the Z-sequence of D_{m} is $Z_{m}=\{\underbrace{1,1, \ldots, 1}_{m-1}, 0,0, \ldots\}$ and hence

$$
d_{n, 0}^{(m)}=\sum_{\ell=0}^{m-2} d_{n-1, \ell}^{(m)} \text { and } d_{n, k}^{(m)}=d_{n-1, k-1}^{(m)}+\sum_{\ell=0}^{m-2} d_{n-1, k+\ell}^{(m)} \text { for } n \geq k \geq 1
$$

Let $\hat{d}_{n, k}^{(m)}$ be the number of all paths from $(0,0)$ to $(n, n-k)$ using the horizontal step $H=(1,0)$ and the vertical step $V=(0,1)$ that has no consecutive $m V$'s (denoted by $V_{1} \ldots V_{m}$), which do not pass through the line $y=x$ for $n \geq k \geq 0, m \geq 1$. In particular, $\hat{d}_{n, 0}^{(m)}$ counts the number of all paths from $(0,0)$ to (n, n) using the steps H and V that has no $V_{1} \ldots V_{m}$. We define $\hat{d}_{0,0}^{(m)}:=1$. First, we notice that a path from $(0,0)$ to $(n, n-k)$ must pass through at least one of the points $(n-1, \ell)$ for $\ell=0,1, \ldots, n-k$. In counting process, to avoid the duplication, we may assume that the path starting at $(0,0)$ and arriving at $(n-1, \ell)$
only has a horizontal step as the next step. It is obvious that
$\hat{d}_{n, 0}^{(m)}=\sum_{\ell=0}^{n-1} \hat{d}_{n-1, \ell}^{(m)}$ for $1 \leq n<m$ and $\hat{d}_{n, k}^{(m)}=\sum_{\ell=0}^{k} \hat{d}_{n-1, k-\ell}^{(m)}$ for $1 \leq k \leq n \leq m$
since no path has the arrangement $V_{1} \ldots V_{m}$.
Now, let us consider $\hat{d}_{m, 0}^{(m)}$. There are $m-1$ points $(m-1,0), \ldots(m-1, m-$ $2)$ that the path from $(0,0)$ to (m, m) must pass through. If the path pass through the point $(m-1,0)$, then it has the arrangement $V_{1} \ldots V_{m}$. Other points have no problem to pass through. So $\hat{d}_{m, 0}^{(m)}=\sum_{\ell=0}^{m-2} \hat{d}_{m-1, \ell}^{(m)}$. On the other hand, let $1 \leq m<n$. Let us consider the path from $(0,0)$ to (n, n). To avoid the arrangement $V_{1} \ldots V_{m}$, no path must pass the points $(n-1, \ell)$ for $\ell=0,1, \ldots, n-m$. Since the number of all paths from $(0,0)$ to $(n-1, \ell)$ that has no $V_{1} \ldots V_{m}$ is $\hat{d}_{n-1, n-\ell-1}^{(m)}$, we have $\hat{d}_{n, 0}^{(m)}=\sum_{\ell=n-m-1}^{n-1} \hat{d}_{n-1, n-\ell-1}^{(m)}=\sum_{\ell=0}^{m-2} \hat{d}_{n-1, \ell}^{(m)}$. Next, let us consider the path going from $(0,0)$ to $(n, n-k)$. Similarly, to avoid $V_{1} \ldots V_{m}$, the path doesn't have to pass the points $(n-1, \ell)$ for $\ell=0,1, \ldots, n-k-m$. Thus, $\hat{d}_{n, k}^{(m)}=\sum_{\ell=n-k-m+1}^{n-k} \hat{d}_{n-1, n-\ell-1}^{(m)}=\sum_{\ell=k-1}^{k+m-2} \hat{d}_{n-1, \ell}^{(m)}=\hat{d}_{n-1, k-1}^{(m)}+$ $\sum_{\ell=0}^{m-2} \hat{d}_{n-1, k+\ell}^{(m)}$.
Let $d_{0,0}^{(m)}=\hat{d}_{0,0}^{(m)}$. Then we obtain $d_{n, k}^{(m)}=\hat{d}_{n, k}^{(m)}$ for all $n \geq k \geq 0$ and hence $d_{n, k}^{(m)}$ counts the number of all paths from $(0,0)$ to ($n, n-k$) using the horizontal step $H=(1,0)$ and the vertical step $V=(0,1)$ that has no consecutive $m V$'s, which do not pass through the line $y=x$ for $n \geq k \geq 0, m \geq 1$.

3. Combinatorial identity for $m=4$

In this section, we consider the explicit form of the generating function(g.f.) $f_{m}(z)$ in $D_{m}=\left(\frac{f_{m}(z)}{z}, f_{m}(z)\right)$ and then we discuss some combinatorial identities.

Since $f_{m}(z)$ is given by a solution of the equation (2), it is difficult to get the explicit form of $f_{m}(z)$ for $m \geq 4$ directly. In some cases we can get the g.f. for the inverse matrix of D_{m} by the known Riordan matrix.

For example, let $m=4$. Then

$$
D_{4}=\left(\frac{f_{4}(z)}{z}, f_{4}(z)\right)=\left[\begin{array}{ccccccc}
1 & & & & & \\
1 & 1 & & & & \\
2 & 2 & 1 & & & \\
5 & 5 & 3 & 1 & & \\
13 & 14 & 9 & 4 & 1 & \\
36 & 40 & 28 & 14 & 5 & 1 \\
& & \cdots & & &
\end{array}\right]
$$

where undefined entries of D_{4} are zeros.
Consider the Riordan matrix $X:=\left(\frac{g(z)}{z}, g(z)\right)$ where

$$
g(z)=\frac{1-z+z^{2}+z^{3}-\sqrt{\left(1-z^{4}\right)\left(1-2 z-z^{2}\right)}}{2 z}
$$

By the matrix multiplication of a Riordan group we obtain $D_{4} X=$ $\left(\frac{g(f)}{z}, g(f)\right)$ where $f:=f_{4}(z)$ and

$$
\begin{equation*}
g(f)=\frac{1-f+f^{2}+f^{3}-\sqrt{\left(1-f^{4}\right)\left(1-2 f-f^{2}\right)}}{2 f} \tag{3}
\end{equation*}
$$

By applying (2) for $m=4$ to (3), we can get

$$
g(f)=z\left(\frac{1-\sqrt{1-4 z}}{2 z}\right)^{2},
$$

which is known as the the generalized Catalan numbers (A004149)[7]. Hence we have

$$
D_{4} X=\left(\left(\frac{1-\sqrt{1-4 z}}{2 z}\right)^{2}, z\left(\frac{1-\sqrt{1-4 z}}{2 z}\right)^{2}\right):=B .
$$

Equivalently,

$$
D_{4}^{-1}=X B^{-1}=\left(\frac{h(z)}{z}, h(z)\right),
$$

where
(4) $h(z)=2 z \frac{1-z+z^{2}+z^{3}-\sqrt{\left(1-z^{4}\right)\left(1-2 z-z^{2}\right)}}{\left(1+z+z^{2}+z^{3}-\sqrt{\left(1-z^{4}\right)\left(1-2 z-z^{2}\right)}\right)^{2}}$.

Theorem 3.1. Let $D_{4}=\left[d_{n, k}^{(4)}\right]_{n, k \geq 0}$. Then

$$
\begin{equation*}
\sum_{k=0}^{n} d_{n, k}^{(4)}\left(\sum_{j=0}^{\frac{k+2}{2}}\binom{k+2}{2 j+2} 2^{j}\right)=4^{n}, \quad n \geq 0 \tag{5}
\end{equation*}
$$

Proof. Let us multiply the column vector $\left(1,4,4^{2}, \ldots\right)^{T}$ to $D_{4}^{-1}=H$. Then by (4), a simple computation shows that

$$
\left(\frac{h(z)}{z}, h(z)\right)\left[\begin{array}{c}
1 \\
4 \\
4^{2} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
1 \\
3 \\
8 \\
\vdots
\end{array}\right]
$$

where the sequence $\{1,3,8,20, \ldots\}=:\left\{p_{n}\right\}$ is the binomial transform of the alternating sequence of 2^{n} and $3 \cdot 2^{n}$ (A029744)[7] and has the explicit formula $p_{n}=\sum_{j=0}^{\frac{n+2}{2}}\binom{n+2}{2 j+2} 2^{j}$ where $n \geq 0(\mathrm{~A} 048739)[7]$. Therefore, from

$$
D_{4}\left[\begin{array}{c}
1 \\
3 \\
8 \\
20 \\
\vdots
\end{array}\right]=\left[\begin{array}{cccc}
1 & & & \\
1 & 1 & & \\
2 & 2 & 1 & \\
5 & 5 & 3 & 1 \\
& \cdots & &
\end{array}\right]\left[\begin{array}{c}
1 \\
3 \\
8 \\
20 \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
1 \\
4 \\
4^{2} \\
4^{3} \\
\vdots
\end{array}\right]
$$

we obtain (5).
Since D_{m} is a invertible, there is always a sequence $\left\{s_{n}^{(m)}\right\}_{n \in \mathbf{N}_{0}}$ of some transforms satisfying

$$
\sum_{k=0}^{n} d_{n, k}^{(m)} s_{k}^{(m)}=m^{n}, \quad m \geq 5 .
$$

Problem: Find the g.f. for a sequence $\left\{s_{n}^{(m)}\right\}_{n \in \mathbf{N}_{0}}$ for each $m \in N_{0}$.

References

[1] G.-S. Cheon and H. Kim,Simple proofs of open problems about the structure of involutions in the Riordan group, LAA 428 (2008), 930-940
[2] G.-S. Cheon, H. Kim and L. W. Shapiro, Riordan group involutions, LAA 428 (2008), 941-952
[3] D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Can. J. Math. Vol. 49(2) (1997), 301-320
[4] D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math. 22 (1978), 301-310.
[5] L. W. Shapiro, S. Getu, W.-J. Woan and L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.
[6] L. W. Shapiro, Bijections and the Riordan group, Theoretical Computer Science 307 (2003), 403-413.
[7] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/ñjas/sequences.

Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Rep. of Korea
E-mail: hakkai14@skku.edu

[^0]: Received November 1, 2007.
 2000 Mathematics Subject Classification: Primary: 05A15; secondary: 05A40.
 Key words and phrases: Riordan array, A-sequence, lattice path.

