R-SEMI-GENERALIZED FUZZY CONTINUOUS MAPS

Won Keun Min and Chun-Kee Park*

ABSTRACT. In this paper, we introduce the concepts of r-semi-generalized fuzzy closed sets, r-semi-generalized fuzzy open sets, r-semi-generalized fuzzy continuous maps in fuzzy topological spaces and investigate some of their properties.

1. Introduction

R. Badard [1] introduced the concept of the fuzzy topological space which is an extension of Chang's fuzzy topological space [4]. Many mathematical structures in fuzzy topological spaces were introduced and studied. In particular, K. C. Chattopadhyay and S. K. Samanta [5] and S. J. Lee and E. P. Lee [7] introduced the concepts of fuzzy r-closure and fuzzy r-interior in fuzzy topological spaces and obtained some of their properties. S. J. Lee and E. P. Lee [7] also introduced the concepts of fuzzy r-semi-open sets and fuzzy r-semi-continuous maps in fuzzy topological spaces which are generalizations of fuzzy semi-open sets and fuzzy semi-continuous maps in Chang's fuzzy topological space and obtained some of their properties. P. Bhattacharya and B. K. Lahiri [3] introduced the concepts of semi-generalized open sets and semi-generalized closed sets in topological spaces.

In this paper, we introduce the concepts of r-semi-generalized fuzzy closed sets, r-semi-generalized fuzzy open sets, r-semi-generalized fuzzy continuous maps in fuzzy topological spaces and investigate some of their properties.

Received April 12, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 54A05, 54C08.

Key words and phrases: r-semi-generalized fuzzy closed sets, r-semi-generalized fuzzy open sets, r-semi-generalized fuzzy continuous maps.

^{*} Corresponding author

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0,1] and $I_0 = (0,1]$. The family of all fuzzy sets of X will be denoted by I^X . By $\tilde{0}$ and $\tilde{1}$ we denote the characteristic functions of ϕ and X, respectively. For any $\mu \in I^X$, μ^c denotes the complement of μ , i.e., $\mu^c = \tilde{1} - \mu$.

A fuzzy topology [1, 10], which is also called a smooth topology, on X is a map $\tau: I^X \to I$ satisfying the following conditions:

- (O1) $\tau(\tilde{0}) = \tau(\tilde{1}) = 1;$
- (O2) $\forall \mu_1, \mu_2 \in I^X, \ \tau(\mu_1 \wedge \mu_2) \ge \tau(\mu_1) \wedge \tau(\mu_2);$
- (O3) for each subfamily $\{\mu_i : i \in \Gamma\} \subseteq I^X$, $\tau(\cup_{i \in \Gamma} \mu_i) \ge \wedge_{i \in \Gamma} \tau(\mu_i)$.

The pair (X, τ) is called a fuzzy topological space (for short, fts), which is also called a smooth topological space.

DEFINITION 2.1. [5, 7] Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the fuzzy r-closure of μ is defined by

$$cl(\mu, r) = \land \{ \rho \in I^X | \mu \le \rho, \ \tau(\rho^c) \ge r \}$$

and the fuzzy r-interior of μ is defined by

$$int(\mu, r) = \forall \{ \rho \in I^X | \mu \ge \rho, \ \tau(\rho) \ge r \}.$$

For $r \in I_0$, we call μ a fuzzy r-open set of X if $\tau(\mu) \geq r$ and μ a fuzzy r-closed set of X if $\tau(\mu^c) \geq r$.

THEOREM 2.2. [5, 7] Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $cl(\tilde{0},r) = \tilde{0}, int(\tilde{1},r) = \tilde{1},$
- (2) $\mu \le cl(\mu, r), int(\mu, r) \le \mu$,
- (3) $cl(\mu, r) \le cl(\mu, s)$, $int(\mu, r) \ge int(\mu, s)$ if $r \le s$,
- (4) $cl(\mu \lor \lambda, r) = cl(\mu, r) \lor cl(\lambda, r), int(\mu \land \lambda, r) = int(\mu, r) \land int(\lambda, r),$
- $(5) \ cl(cl(\mu,r),r) = cl(\mu,r), \ int(int(\mu,r),r) = int(\mu,r).$
- (6) $cl(\mu, r)^c = int(\mu^c, r), int(\mu, r)^c = cl(\mu^c, r).$

DEFINITION 2.3. [7] Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then a map $f: (X, \tau) \to (Y, \sigma)$ is called

(1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-closed set of X for each fuzzy r-closed set μ of Y.

- (2) a fuzzy r-open map if $f(\mu)$ is a fuzzy r-open set of Y for each fuzzy r-open set μ of X.
- (3) a fuzzy r-closed map if $f(\mu)$ is a fuzzy r-closed set of Y for each fuzzy r-closed set μ of X.

DEFINITION 2.4. [7] Let (X, τ) be a fts, $\mu \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called fuzzy r-semi-open if there is a fuzzy r-open set ρ of X such that $\rho \leq \mu \leq cl(\rho, r)$.
- (2) A fuzzy set μ is called *fuzzy r-semi-closed* if there is a fuzzy r-closed set ρ of X such that $int(\rho, r) \leq \mu \leq \rho$.

THEOREM 2.5. [7] Let (X, τ) be a fts, $\mu \in I^X$ and $r \in I_0$. Then the following are equivalent:

- (1) μ is a fuzzy r-semi-open set.
- (2) μ^c is a fuzzy r-semi-closed set.
- (3) $cl(int(\mu, r), r) \ge \mu$.
- (4) $int(cl(\mu^c, r), r) \leq \mu^c$.

THEOREM 2.6. [7] Let (X, τ) be a fts and $r \in I_0$. Then

- (1) Any union of fuzzy r-semi-open sets is fuzzy r-semi-open.
- (2) Any intersection of fuzzy r-semi-closed sets is fuzzy r-semi-closed.

DEFINITION 2.7. [7] Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the fuzzy r-semi-closure of μ is defined by

$$scl(\mu, r) = \land \{ \rho \in I^X | \mu \le \rho, \rho \text{ is fuzzy r-semi-closed} \}.$$

and the fuzzy r-semi-interior of μ is defined by

$$sint(\mu, r) = \bigvee \{ \rho \in I^X | \ \mu \ge \rho, \ \rho \text{ is fuzzy r-semi-open} \}.$$

THEOREM 2.8. [7] Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- $(1) \ scl(\tilde{0},r) = \tilde{0}, \ sint(\tilde{1},r) = \tilde{1},$
- (2) $\mu \le scl(\mu, r), sint(\mu, r) \le \mu,$
- (3) $scl(\mu, r) \leq scl(\mu, s)$, $sint(\mu, r) \geq sint(\mu, s)$ if $r \leq s$,

- (4) $scl(\mu \lor \lambda, r) \ge scl(\mu, r) \lor scl(\lambda, r), sint(\mu \land \lambda, r) \le int(\mu, r) \land int(\lambda, r),$
- (5) $int(\mu, r) \le sint(\mu, r) \le \mu \le scl(\mu, r) \le cl(\mu, r)$,
- (6) $scl(scl(\mu, r), r) = scl(\mu, r), sint(sint(\mu, r), r) = sint(\mu, r).$
- (7) $scl(\mu, r)^c = sint(\mu^c, r), sint(\mu, r)^c = scl(\mu^c, r).$

DEFINITION 2.9. [7] Let (X, τ) and (Y, σ) be fts's and $r \in I_0$. Then a map $f: (X, \tau) \to (Y, \sigma)$ is called

- (1) a fuzzy r-semi-continuous map if $f^{-1}(\mu)$ is a fuzzy r-semi-open set of X for each fuzzy r-open set μ of Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-semi-closed set of X for each fuzzy r-closed set μ of Y.
- (2) a fuzzy r-semi-open map if $f(\mu)$ is a fuzzy r-semi-open set of Y for each fuzzy r-open set μ of X.
- (3) a fuzzy r-semi-closed map if $f(\mu)$ is a fuzzy r-semi-closed set of Y for each fuzzy r-closed set μ of X.

3. r-semi-generalized fuzzy closed sets

DEFINITION 3.1. [9] Let (X, τ) be a fts, $\mu, \rho \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called r-generalized fuzzy closed (for short, r-gfc) if $cl(\mu, r) \leq \rho$ whenever $\mu \leq \rho$ and $\tau(\rho) \geq r$.
- (2) A fuzzy set μ is called *r*-generalized fuzzy open (for short, r-gfo) if μ^c is r-gfc.

DEFINITION 3.2. Let (X, τ) be a fts, $\mu, \rho \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called r-generalized fuzzy semi-closed (for short, r-gfsc) if $scl(\mu, r) \leq \rho$ whenever $\mu \leq \rho$ and $\tau(\rho) \geq r$.
- (2) A fuzzy set μ is called r-generalized fuzzy semi-open (for short, r-gfso) if μ^c is r-gfsc.

DEFINITION 3.3. Let (X, τ) be a fts, $\mu, \rho \in I^X$ and $r \in I_0$.

- (1) A fuzzy set μ is called r-semi-generalized fuzzy closed (for short, r-sgfc) if $scl(\mu, r) \leq \rho$ whenever $\mu \leq \rho$ and ρ is r-semi-open.
- (2) A fuzzy set μ is called r-semi-generalized fuzzy open (for short, r-sgfo) if μ^c is r-sgfc.

Clearly, μ is r-gfc $\Rightarrow \mu$ is r-gfsc, μ is r-gfso $\Rightarrow \mu$ is r-gfso, μ is r-gfsc, μ is r-gfsc, μ is r-gfsc.

THEOREM 3.4. Let (X, τ) be a fts and $r \in I_0$.

- (1) If μ is a r-sgfc set and $\mu \leq \lambda \leq scl(\mu, r)$, then λ is a r-sgfc set.
- (2) If μ is a fuzzy r-semi-closed set, then μ is a r-sgfc set.
- (3) μ is a r-sgfo set if and only if $\rho \leq sint(\mu, r)$ whenever $\rho \leq \mu$ and ρ is r-semi-closed.
- (4) If μ is a r-sgfo set and $sint(\mu, r) \leq \lambda \leq \mu$, then λ is a r-sgfo set.
- (5) If μ is a fuzzy r-semi-open set, then μ is a r-sgfo set.

Proof. (1) Let $\lambda \leq \rho$ and ρ be r-semi-open. Then $\mu \leq \rho$. Since μ is r-sgfc, $scl(\mu, r) \leq \rho$. Since $\lambda \leq scl(\mu, r)$, $scl(\lambda, r) \leq scl(scl(\mu, r), r) = scl(\mu, r) \leq \rho$. Hence λ is a r-sgfc set.

- (2), (3) and (5) are obvious.
- (4) Since $sint(\mu, r) \leq \lambda \leq \mu$, $\mu^c \leq \lambda^c \leq sint(\mu, r)^c = scl(\mu^c, r)$. Since μ is a r-sgfo set, μ^c is a r-sgfc set. By (1), λ^c is a r-sgfc set. Hence λ is a r-sgfo set.

DEFINITION 3.5. Let (X, τ) be a fts. For $\mu \in I^X$ and $r \in I_0$, the r-semi-generalized fuzzy closure of μ is defined by

$$sgcl(\mu,r) = \wedge \{\rho \in I^X | \ \mu \leq \rho, \ \rho \text{ is r-sgfc} \}.$$

and the r-semi-generalized fuzzy interior of μ is defined by

$$sgint(\mu, r) = \forall \{ \rho \in I^X | \mu \ge \rho, \rho \text{ is r-sgfo} \}.$$

THEOREM 3.6. Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- $(1) \ sgcl(\tilde{0}, r) = \tilde{0},$
- (2) $\mu \leq sgcl(\mu, r)$,
- (3) $sgcl(\mu, r) \leq sgcl(\mu, s)$ if $r \leq s$,
- (4) $sgcl(\mu, r) \leq sgcl(\lambda, r)$ if $\mu \leq \lambda$,
- (5) $sgcl(\mu \lor \lambda, r) \ge sgcl(\mu, r) \lor sgcl(\lambda, r),$
- (6) $sgcl(sgcl(\mu, r), r) = sgcl(\mu, r),$
- (7) $gscl(\mu, r) \leq sgcl(\mu, r)$.

Proof. (1), (2),(3) and (4) are easily obtained from Definition 3.5.

- (5) Since $\mu \leq \mu \vee \lambda$ and $\lambda \leq \mu \vee \lambda$, $sgcl(\mu, r) \leq sgcl(\mu \vee \lambda, r)$ and $sgcl(\lambda, r) \leq sgcl(\mu \vee \lambda, r)$ by (4). Hence $sgcl(\mu, r) \vee sgcl(\lambda, r) \leq sgcl(\mu \vee \lambda, r)$.
- (6) $sgcl(\mu, r) \leq sgcl(sgcl(\mu, r), r)$ by (2) and (4). Suppose that $sgcl(\mu, r) \not\geq sgcl(sgcl(\mu, r), r)$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $sgcl(\mu, r)(x) < t < sgcl(sgcl(\mu, r), r)(x)$.

Since $sgcl(\mu, r)(x) < t$, there exists a r-sgfc set μ_1 with $\mu \leq \mu_1$ such that $sgcl(\mu, r)(x) \leq \mu_1(x) < t$. Since $\mu \leq \mu_1$, $sgcl(\mu, r) \leq \mu_1$ and $sgcl(sgcl(\mu, r), r) \leq \mu_1$ by (4). Hence $sgcl(sgcl(\mu, r), r)(x) \leq \mu_1(x) < t$. This is a contraction. Hence $sgcl(\mu, r) \geq sgcl(sgcl(\mu, r), r)$. Thus $sgcl(sgcl(\mu, r), r) = sgcl(\mu, r)$.

(7) Since every r-sgfc set is r-gsfc set, $gscl(\mu,r) \leq sgcl(\mu,r)$ by Definition 3.5.

THEOREM 3.7. Let (X, τ) be a fts. Then for $\mu, \lambda \in I^X$ and $r, s \in I_0$,

- (1) $sgint(\tilde{1}, r) = \tilde{1},$
- (2) $sgint(\mu, r) \leq \mu$,
- (3) $sgint(\mu, r) \ge sgint(\mu, s)$ if $r \le s$,
- (4) $sgint(\mu, r) \leq sgint(\lambda, r)$ if $\mu \leq \lambda$,
- (5) $sgint(\mu \wedge \lambda, r) \leq sgint(\mu, r) \wedge sgint(\lambda, r),$
- $(6) \ sgint(sgint(\mu,r),r) = sgint(\mu,r),$
- (7) $gsint(\mu, r) \leq sgint(\mu, r)$.

Proof. The proof is similar to Theorem 3.6.

THEOREM 3.8. Let (X, τ) be a fts. Then for $\mu \in I^X$ and $r \in I_0$,

- (1) $sgcl(\mu, r)^c = sgint(\mu^c, r),$
- (2) $sgint(\mu, r)^c = sgcl(\mu^c, r)$.

Proof. (1) From Definition 3.5, we have

$$sgcl(\mu, r)^{c} = (\land \{\rho \in I^{X} | \mu \leq \rho, \ \rho \text{ is r-sgfc} \})^{c}$$
$$= \lor \{\rho^{c} \in I^{X} | \mu^{c} \geq \rho^{c}, \ \rho^{c} \text{ is r-sgfo} \}$$
$$= \lor \{\lambda \in I^{X} | \mu^{c} \geq \lambda, \ \lambda \text{ is r-sgfo} \}$$
$$= sgint(\mu^{c}, r).$$

(2) The proof is similar to (1).

THEOREM 3.9. Let (X, τ) be a fts. Then for $\mu \in I^X$ and $r \in I_0$,

- (1) $sgint(sgcl(sgint(sgcl(\mu, r), r), r), r) = sgint(sgcl(\mu, r), r),$
- (2) $sgcl(sgint(sgcl(sgint(\mu, r), r), r), r) = sgcl(sgint(\mu, r), r).$

Proof. (1) Since we have $sgint(sgcl(\mu,r),r) \leq sgcl(\mu,r)$, $sgcl(sgint(sgcl(\mu,r),r),r) \leq sgcl(sgcl(\mu,r),r) = sgcl(\mu,r)$ by Theorem 3.6(6). Hence we have

$$sgint(sgcl(sgint(sgcl(\mu, r), r), r), r) \leq sgint(sgcl(\mu, r), r).$$

Conversely, since $sgint(sgcl(\mu, r), r) \leq sgcl(sgint(sgcl(\mu, r), r), r)$, from Theorem 3.7(6) we have

$$sgint(sgcl(\mu, r), r) = sgint(sgint(sgcl(\mu, r), r), r)$$

$$\leq sgint(sgcl(sgint(sgcl(\mu, r), r), r), r).$$

(2) The proof is similar to (1).

4. r-semi-generalized fuzzy continuous maps

DEFINITION 4.1. Let (X, τ) and (Y, σ) be fts's and $r \in I_0$ and let $f: (X, \tau) \to (Y, \sigma)$ be a map.

- (1) f is called r-semi-generalized fuzzy continuous (for short, r-semi-gf-continuous) if $f^{-1}(\mu)$ is a r-sgfc set of X for each fuzzy r-closed set μ of Y.
- (2) f is called $strongly\ r$ -semi-generalized fuzzy continuous (shortly, strongly r-semi-gf-continuous) if $f^{-1}(\mu)$ is a fuzzy r-closed set of X for each r-sgfc set μ of Y.
- (3) f is called r-semi-generalized fuzzy irresolute (for short, r-semi-gf-irresolute) if $f^{-1}(\mu)$ is a r-sgfc set of X for each r-sgfc set μ of Y.
- (4) f is called r-semi-generalized fuzzy open (for short, r-semi-gf-open) if $f(\mu)$ is a r-sgfo set of Y for each fuzzy r-open set μ of X.

(5) f is called strongly r-semi-generalized fuzzy open (for short, strongly r-semi-gf-open) if $f(\mu)$ is a r-sgfo set of Y for each r-sgfo set μ of X.

REMARK 4.2. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$ and let $f:(X,\tau) \to (Y,\sigma)$ be a map.

- (1) If f is fuzzy r-semi-continuous, then f is r-semi-gf-continuous.
- (2) If f is r-semi-gf-irresolute, then f is r-semi-gf-continuous.
- (3) If f is strong r-semi-gf-continuous, then f is r-semi-gf-irresolute.
- (4) If f is fuzzy r-semi-open, then f is r-semi-gf-open.
- (5) If f is strongly r-semi-gf-open, then f is r-semi-gf-open.

THEOREM 4.3. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$ and let $f:(X,\tau) \to (Y,\sigma)$ be a map. Then the following are equivalent:

- (1) f is r-semi-gf-continuous.
- (2) $f^{-1}(\mu)$ is a r-sgfo set of X for each fuzzy r-open set μ of Y.

Proof. It is obvious.

THEOREM 4.4. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$ and let $f:(X,\tau) \to (Y,\sigma)$ be a map. Then the following are equivalent:

- (1) f is strongly r-semi-gf-continuous.
- (2) $f^{-1}(\mu)$ is a fuzzy r-open set of X for each r-sgfo set μ of Y.

Proof. It is obvious.

THEOREM 4.5. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$. If $f:(X,\tau) \to (Y,\sigma)$ is a r-semi-gf-continuous map, then $f(sgcl(\mu,r)) \leq cl(f(\mu),r)$ for each $\mu \in I^X$.

Proof. For each $\mu \in I^X$, $cl(f(\mu), r)$ is a fuzzy r-closed set of Y. Since f is r-semi-gf-continuous, $f^{-1}(cl(f(\mu), r))$ is a r-sgfc set of X. $\mu \leq f^{-1}(cl(f(\mu), r))$ and so $sgcl(\mu, r) \leq f^{-1}(cl(f(\mu), r))$. Hence $f(sgcl(\mu, r)) \leq cl(f(\mu), r)$.

THEOREM 4.6. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$. Then $f:(X,\tau)\to (Y,\sigma)$ is a r-semi-gf-irresolute map if and only if $f^{-1}(\mu)$ is a r-sgfo set of X for each r-sgfo set μ of Y.

Proof. It is obvious.

THEOREM 4.7. Let (X,τ) , (Y,σ) and (Z,ν) be fts's and $r \in I_0$. If $f:(X,\tau)\to (Y,\sigma)$ is a r-semi-gf-irresolute map and $g:(Y,\sigma)\to (Z,\nu)$ is a r-semi-gf-continuous map, then $g \circ f: (X,\tau) \to (Z,\nu)$ is a r-semigf-continuous map.

Proof. It is obvious.

THEOREM 4.8. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$. If f: $(X,\tau) \to (Y,\sigma)$ is a r-semi-gf-irresolute map, then

- $\begin{array}{ll} (1) & f(sgcl(\mu,r)) \leq sgcl(f(\mu),r) \text{ for each } \mu \in I^X, \\ (2) & sgcl(f^{-1}(\mu),r) \leq f^{-1}(sgcl(\mu,r)) \text{ for each } \mu \in I^Y, \\ (3) & f^{-1}(sgint(\mu,r)) \leq sgint(f^{-1}(\mu),r) \text{ for each } \mu \in I^Y. \end{array}$

Proof. (1) For each $\mu \in I^X$, we have

$$f^{-1}(sgcl(f(\mu), r)) = f^{-1}(\land \{\rho \in I^Y | f(\mu) \leq \rho, \ \rho \text{ is r-sgfc}\})$$

$$\geq f^{-1}(\land \{\rho \in I^Y | \mu \leq f^{-1}(\rho), \ \rho \text{ is r-sgfc}\})$$

$$\geq \land \{f^{-1}(\rho) \in I^X | \mu \leq f^{-1}(\rho), \ f^{-1}(\rho) \text{ is r-sgfc}\}$$

$$\geq \land \{\lambda \in I^X | \mu \leq \lambda, \ \lambda \text{ is r-sgfc}\}$$

$$= sgcl(\mu, r).$$

Hence $f(sgcl(\mu, r)) \leq sgcl(f(\mu), r)$.

(2) For each $\mu \in I^Y$, we have

$$f^{-1}(sgcl(\mu, r)) = f^{-1}(\land \{\rho \in I^Y | \mu \le \rho, \ \rho \text{ is r-sgfc}\})$$

$$\geq f^{-1}(\land \{\rho \in I^Y | f^{-1}(\mu) \le f^{-1}(\rho), \ \rho \text{ is r-sgfc}\})$$

$$\geq \land \{f^{-1}(\rho) \in I^X | f^{-1}(\mu) \le f^{-1}(\rho), \ f^{-1}(\rho) \text{ is r-sgfc}\}$$

$$\geq \land \{\lambda \in I^X | f^{-1}(\mu) \le \lambda, \ \lambda \text{ is r-sgfc}\}$$

$$= sgcl(f^{-1}(\mu), r).$$

Hence $sgcl(f^{-1}(\mu), r) \leq f^{-1}(sgcl(\mu, r))$. (3) For each $\mu \in I^Y$, we have

$$\begin{split} f^{-1}(sgint(\mu,r)) &= f^{-1}(\vee\{\rho \in I^Y | \ \rho \leq \mu, \ \rho \text{ is r-sgfo}\}) \\ &\leq f^{-1}(\vee\{\rho \in I^Y | \ f^{-1}(\rho) \leq f^{-1}(\mu), \ \rho \text{ is r-sgfo}\}) \\ &\leq \vee\{f^{-1}(\rho) \in I^X | f^{-1}(\rho) \leq f^{-1}(\mu), f^{-1}(\rho) \text{ is r-sgfo}\} \\ &\leq \vee\{\lambda \in I^X | \ \lambda \leq f^{-1}(\mu), \ \lambda \text{ is r-sgfo}\} \\ &= sgint(f^{-1}(\mu), r). \end{split}$$

Hence $f^{-1}(sgint(\mu, r)) \leq sgint(f^{-1}(\mu), r)$.

THEOREM 4.9. Let (X,τ) and (Y,σ) be fts's and $r \in I_0$. If $f:(X,\tau) \to (Y,\sigma)$ is a strongly r-semi-gf-open map, then $f(sgint(\mu,r)) \leq sgint(f(\mu),r)$ for each $\mu \in I^X$.

Proof. For each $\mu \in I^X$, we have

$$f(sgint(\mu, r)) = f(\vee \{\rho \in I^X | \rho \leq \mu, \rho \text{ is r-sgfo}\})$$

$$\leq f(\vee \{\rho \in I^X | f(\rho) \leq f(\mu), \rho \text{ is r-sgfo}\})$$

$$\leq \vee \{f(\rho) \in I^Y | f(\rho) \leq f(\mu), f(\rho) \text{ is r-sgfo}\})$$

$$\leq \vee \{\lambda \in I^Y | \lambda \leq f(\mu), \lambda \text{ is r-sgfo}\}$$

$$= sqint(f(\mu), r).$$

Hence $f(sgint(\mu, r)) \leq sgint(f(\mu), r)$.

References

- 1. R. Badard, $Smooth\ axiomatics,$ First IFSA Congress, Palma de Mallorca (July 1986).
- 2. J. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997), 93-100.
- 3. P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, Indian J. Math. 29 (1987), 375-382.

П

- 4. C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- 5. K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems **54** (1993), 207-212.
- 6. M. Demirci, On several types of compactness in smooth topological spaces, Fuzzy Sets and Systems **90** (1997), 83-88.
- 7. S. J. Lee and E. P. Lee, Fuzzy r-continuous and fuzzy r-semicontinuous maps, Int. J. Math. Math. Sci. 27 (2001), no. 1, 53-63.
- 8. N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo 19 (1970), 89-96.
- 9. C. K. Park and W. K. Min, r-generalized fuzzy compactness (to appear).
- A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.

Department of Mathematics Kangwon National University Chuncheon 200–701, Korea

E-mail: wkmin@kangwon.ac.kr, ckpark@kangwon.ac.kr