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WEAK CONVERGENCE OF VARIOUS MODELS TO

FRACTIONAL BROWNIAN MOTION

Joo-Mok Kim

Abstract. We consider arrival process and ON/OFF source model
which allows for long packet trains and long inter-train distances.
We prove the weak convergence of theses processes to Fractional
Brownian motion. Finally, we figure out the coefficients of BH(t)
and time t when ON/OFF periods have the Pareto distribution.

1. Introduction

Many researchers have studied long range dependent process and self-
similar process because of burstiness of network traffic at any time scale,
Though the various models proposed for capturing the long-range de-
pendent nature of network traffic are all either exactly or asymptotically
second order self-similar, their effect on network performance can be
very different([6], [7], [8]).

Self-similarity, long range dependence and heavy tailed process have
been observed in many time series, i.e. network traffic and finance([4]).
In particular, fractional Brownian motion and FARIMA in modern packet
network traffic has been the focus of much attention ([5]). Various meth-
ods for estimating the self-similar parameter and intensity of long range
dependence in time series has been investigated ([7], [9]). And, there
has been a recent flood of literature and discussion on the tail behavior
of queue-length distribution, motivated by potential applications to the
design and control by high-speed telecommunication networks([1], [2],
[3]).

In this paper we consider arrival process based on autoregressive pro-
cess and show that the suitably scaled distributions of those processes
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converge to fractional Brownian motion in the sense of finite dimensional
distributions.

On the other hand, we consider idealized ON/OFF source model
which allows for long packet trains and long inter-train distances. [9]
proved that the aggregate cumulative packet process behaves like linear
combination of fractional Brownian motion BH(t) and time t. When
ON/OFF periods have the Pareto distribution, we figure out the coeffi-
cients of BH(t) and time t.

In section 2, we define the short range dependence, long range depen-
dence, fractional Brownian motion and self-similarity. In section 3, we
prove the weak convergence of arrival process and autoregressive process
to fractional Brownian motion. In section 4, we figure out the coefficients
of BH(t) and time t when ON/OFF periods have the Pareto distribution.

2. Definition and Preliminary

In this section we first define short range dependance and long range
dependance. Let τX(k) be the covariance of stationary stochastic process
X(t).

Definition 2.1. A stationary stochastic process X(t) exhibits short
range dependence if

∞∑
k=−∞

|τX(k)| < ∞

Definition 2.2. A stationary stochastic process X(t) exhibits long
range dependence if

∞∑
k=−∞

|τX(k)| = ∞

A standard example of a long range dependent process is fractional
Brownian motion, with Hurst parameter H > 1

2
.

Definition 2.3. A stochastic process {BH(t)} is said to be a Frac-
tional Brownian motion(FBM) with Hurst parameter H if

1. BH(t) has stationary increments
2. for t > 0, BH(t) is normally distributed with mean 0
3. BH(0) = 0 a.s.
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4. The increments of BH(t), Z(j) = BH(j + 1)−BH(j) satisfy

ρZ(k) =
1

2
{|k + 1|2H + |k − 1|2H − 2k2H}

Fractional Brownian motion is important example of self-similar pro-
cess defined below.

Definition 2.4. A continuous process X(t) is self-similar with self-
similarity parameter H ≥ 0 if it satisfies the condition:

X(t)
d
= c−HX(ct), ∀ t ≥ 0,∀c > 0,

where the equality is in the sense of finite-dimensional distributions.

3. Weak Convergence to Fractional Brownian motion

Let Xj(i) be the number of arrivals in the ith time unit of jth source.
Let

XM(i) =
M∑

j=1

(Xj(i)− E(Xj(i)),

and τ(k) denote the covariance of X1(i).

Lemma 3.1. ([4]) The stationary sequence

1

M1/2
XM(i)

converges in the sense of finite dimensional distributions to GH(i), where
GH(i) represents a stationary Gaussian process with covariance function
of the same form as τ(k), as M →∞.

Theorem 3.1.

lim
T→∞

lim
M→∞

1

THM1/2

[Tt]∑
i=0

XM(i)

converges to {σ0BH(t)|0 ≤ t ≤ 1} in the sense of finite dimensional
distributions. Furthermore, as M →∞ and T →∞,
(a) (Long Range dependence) If

τ(k) ∼ ck2H−2, c > 0 and 1/2 < H < 1,
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then σ2
0 =

c

H(2H − 1)
.

(b) If
∞∑

k=1

|τ(k)| < ∞ and
∞∑

k=1

τ(k) = c > 0,

then σ2
0 = c.

(c) (Short Range dependence)

τ(k) ∼ ck2H−2, c < 0 and 0 < H < 1/2,

then σ2
0 = − c

H(2H − 1)
.

Proof. Set Zi = 1/M1/2XM(i). By Lemma 3.1, Zi converges in the
sense of finite dimensional distributions to GH(i) as M goes to infin-
ity. By Theorem 7.2.11 of [5], the finite dimensional distributions of

T−H
∑[Tt]

i=0 Zi converges to those of {σ0BH(t), 0 ≤ t ≤ 1}.

Theorem 3.2. Let Xt be the autoregressive process of order one, i.e.
Xt = φ1Xt−1 + at, where at ∼ N(0, 1) for each t. Then

lim
T→∞

lim
M→∞

[Tt]∑
i=0

XM(i) =

√
φ1

1− φ1

B(t),

where, B(t) is a Brownian Motion.

Proof. We know that

(1− φ1B)Xt = at,

i.e.

Xt =
∞∑
i=0

φi
1at−i.

And, we get
CovXt(k) = φk

1, k ≥ 1, |φ1| < 1.

Therefore,
τ(k) = φk

1,

for large M . Since ∑
τ(k) =

∑
φk

1 =
φ1

1− φ1

< ∞,
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we get, by Theorem 3.1 (b),

lim
T→∞

lim
M→∞

[Tt]∑
i=0

XM(i) =
φ1

1− φ1

B1/2(t) =
φ1

1− φ1

B(t).

4. Convergence of ON/OFF Source Model

Let us consider the stationary time series {X(t), t ≥ 0}. X(t) = 1
means that there is a packet at time t and X(t) = 0 means that there is
no packet. Viewing X(t) as the reward at time t, we have a reward of 1
throughout on ON-period, then a reward of 0 throughout the following
OFF-periods, then 1 again, and so on. Suppose the lengths of the ON-
periods are i.i.d., those of the OFF-periods are i.i.d. and the lengths of
ON-periods and OFF-periods are independent. But the ON-periods and
OFF-periods may have the different distributions.

Suppose that there are M i.i.d. sources. Since each source sends its
own sequence of packet trains, it has its own reward sequence {X(m)(t)}.
Therefore, the cumulative packet count at time t is

M∑
m=1

X(m)(t).

Rescaling time by a factor T , we consider the aggregated cumulative
packet counts

XM(Tt) =

∫ Tt

0

(
M∑

m=1

X(m)(u))du

in the interval [0, T t]. To specify the distributions of ON-period O1 and
OFF-periods O2, let

µ1 = EO1, µ2 = EO2

and as x →∞, tailing distributions of O1 , O2 are

l1x
−α1L1(x) and l2x

−α2L2(x)

with 1 < αj < 2, where is a constant lj > 0 and Lj > 0 is a slowly
varying function at infinity.
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Notation. When 1 < αj < 2, set

aj = lj(Γ(2− αj))/(αj − 1),

b = lim
t→∞

tα2−α1
L1(t)

L2(t)
.

If 0 < b < ∞ then set

σ2 =
2(µ2

2a1b + µ2
1a2)

(µ1 + µ2)3Γ(4− αmin)
,

if b = 0 or b = ∞ then set

σ2 =
2µ2

maxamin

(µ1 + µ2)3Γ(4− αmin)
.

Lemma 4.1. For large M and T , the aggregate packet process

{XM(Tt), t ≥ 0}
behaves statistically like

TM
µ1

µ1 + µ2

t + TH
√

L(t)M σBH(t)

where H = (3− αmin)/2 and σ is as above.

Proof. Theorem 1 of [9]

Suppose that ON/OFF periods Oj has the Pareto distribution

P (Oj > x) = Kαjx−αj for x ≥ K > 0.

When 1 < αj < 2, each periods has infinite variance.

Theorem 4.1. Let Oj be ON/OFF-periods that has the Pareto dis-
tributions as above. Then, for large M and T , the aggregate packet
process {XM(Tt), t ≥ 0} behaves statistically like

TM
α1α2 − α1

2α1α2 − α1 − α2

t + THσBH(t)

where, H = (3− αmin)/2 .
Case 1. Suppose that Oj have the same distributions, i.e., α1 = α2 = α,
then

H =
3− α

2
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and

σ2 =
Kα−1Γ(2− α)

2αΓ(4− α)

Case 2. If α1 < α2, then

H =
3− α1

2

and

σ2 =
2K2α2

1(α1 − 1)(α2 − 1)3amin

(2α1α2K − α1K − α2K)3

Case 3. If α1 > α2, then

H =
3− α2

2

and

σ2 =
2K2α2

2(α2 − 1)(α1 − 1)3amin

(2α1α2K − α1K − α2K)3

Proof. Since the expectation of the Pareto distribution is

αjK

αj − 1

for j = 1, 2, · · · . By Lemma 4.1, the coefficient of time t is

α1α2 − α1

2α1α2 − α1 − α2

.

Case 1. Since Oj have the same distributions, we get

lim
t→∞

tα2−α1 = 1.

And we know

α1 = α2 = KαΓ(2− α)/(α− 1).

Thus, we get

σ2 =
Kα−1Γ(2− α)

2αΓ(4− α)
.

In the similar way, we can get Case 2 and Case 3.
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