
Kangweon-Kyungki Math. Jour. 15 (2007), No. 1, pp. 79–85

BASIC CODES OVER POLYNOMIAL RINGS

Young Ho Park

Abstract. We study codes over the polynomial ring Fq[D] and
introduce the notion of basic codes which play a fundamental role
in the theory.

1. Codes over polynomial rings

A code of length n over a ring R (finite or infinite) is a subset of Rn. If
the code is a submodule of the ambient space then it is a linear code. We
will always assume that codes are linear. The Hamming weight wt(v)
of a vector v is the number of non-zero coordinates in that vector. The
minimum distance of a code C, denoted by d(C), is the smallest of all
non-zero weights in the code. To the ambient space Rn we attach the
inner product

(1) [v,w] =
∑

viwi,

where v = (vi), w = (wi). We define the dual code of C to be

(2) C⊥ = {v | [v,w] = 0 for all w ∈ C}.

A code C satisfying C = C⊥ is called a self-dual code. See [2] for general
theory on codes and [3] on self-dual codes.

Let Fq be the field of q elements, and throughout this paper let

P = Fq[D]

denote the infinite ring of polynomials in one indeterminate D over Fq.
The elements of the finite ring

Pm = Fq[D]/(Dm)
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are identified with polynomials a0 + a1D + a2D
2 + · · · + am−1D

m−1 of
degree less than m. This ring is a commutative ring with qm elements.
We sometimes view Pm as a subset of Pr for r > m, and of P by assuming
all coefficients of Di are 0 for i > m. The units of P are precisely the
non-zero elements of degree 0, i.e., P∗ = Fq − {0}, while the units of
Pm are polynomials with a nonzero constant term, i.e., P∗

m = {a0 +
a1D + a2D

2 + · · · + am−1D
m−1 | a0 6= 0}. Since P is a principal ideal

domain, any code C of length n over P is a free module of rank k ≤ n.
In this case, we shall write rank C = k. If C1 ⊂ C2 are codes over P, then
rank C1 ≤ rank C2. A code C of length n and rank k is said to be an
[n, k]-code, or [n, k, d]-code if the minimum distance of C is d. A k × n
matrix whose rows form a basis of [n, k]-code C is called a generator
matrix of C. A generator matrix of C⊥ is called a parity check matrix of
C.

Lemma 1.1. For a code C of length over P, we have

rank C⊥ + rank C = n.

Proof. Let g1, · · · ,gk be the rows of a generator matrix of C, and let
Ĉ = C ⊗Fq [D] Fq(D) be the code generated by {gi} over the quotient field

Fq(D) of P = Fq[D]. Thus rank Ĉ = dimFq(D) Ĉ = k. Since Ĉ is a code

over a field, we know that dimFq(D) Ĉ⊥ = n− k, where

Ĉ⊥ = {v ∈ Fq(D)n | [v,gi] = 0 for all i}.

It is easy to check that the “integral” vectors f1, · · · , fk ∈ Pn are linearly
independent over Fq(D) iff they are linearly independent over P. Note

that Ĉ⊥∩Pn ⊂ C⊥. Let ĥ1, · · · , ĥn−k ∈ Fq(D)n be a basis for Ĉ⊥. There

are elements βi ∈ P such that βiĥi ∈ Pn. Thus the βiĥi are in C⊥
and they are linearly independent over P as well as over Fq(D). Hence
n − k ≤ rank C⊥. Conversely, if h1, · · · ,hs is a basis for C⊥, then they
are in Ĉ⊥ and linearly independent over Fq(D). Thus rank C⊥ ≤ n− k.
The lemma is proved.

From the lemma, we obtain

(3) rank C = rank (C⊥)⊥.

Furthermore, if C is a self-dual [n, k]-code over P, then n = 2k.
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2. Basic codes

For codes C over P, which are codes over an infinite ring Fq[D], we
do not always have (C⊥)⊥ = C. For example, let C = (Dm) be the code
of length 1 generated by Dm. Then C⊥ = {0} and (C⊥)⊥ = P, which is
much larger than C = (Dm). Nevertheless, it is always true that

(4) C ⊂ (C⊥)⊥.

Definition 2.1. A code C over P is said to be basic if C = (C⊥)⊥.

Lemma 2.2. Let C1 ⊂ C2 be codes over P of the same rank. If v ∈ C2,
then αv ∈ C1 for some nonzero α ∈ P.

Proof. Let rank C1 = k and {w1,w2, · · · ,wk} be a basis for C1. Since

rank C2 ≥ rank 〈C1,v〉 ≥ rank C1 = rank C2,

we have rank 〈C1,v〉 = k. Thus the k + 1 vectors w1,w2, · · · ,wk and
v are linearly dependent over P. Hence there is a dependence relation
α1w1 + · · · + αkwk + αv = 0, and thus αv ∈ C1. Finally, α 6= 0 since if
α = 0 then αi = 0 for all i.

Theorem 2.3. The following conditions are equivalent for a code C
over P.

i. C is basic.
ii. αv ∈ C implies v ∈ C for any nonzero α ∈ P.

Proof. Suppose C is basic. If αv ∈ C, then [αv,w] = 0 for all w ∈ C⊥,
which implies [v,w] = 0 for all w ∈ C⊥ since P is an integral domain,
and thus v ∈ (C⊥)⊥ = C. The converse follows from the previous lemma,
(3) and (4).

Remark. Theorem 2.3 is true for any code of finite rank over a prin-
cipal ideal domain.

Corollary 2.4. A code C over P is basic iff C is a dual code of some
code over P.

Proof. If C = C⊥1 and αv ∈ C, then 0 = [αv,w] = α[v,w] for all w ∈
C1 and hence [v,w] = 0 for all w ∈ C1, which implies that v ∈ C⊥1 = C.
The converse is clear.
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This corollary provides us a way of constructing basic codes. Indeed,
the basic codes of length n are exactly the codes defined by an s × n
matrix H0 as

C(H0) = {v ∈ Pn | H0v
T = 0},

i.e., the solutions sets to a family of linear equations. C(H0) is then
basic, since it is dual to the code generated by the rows of H0. Note
that H0 is not necessarily a parity check matrix of C(H0) even if the row
vectors of H0 are linearly independent. For example, take

H0 =

(
1 D 1
D 1 1

)
.

The rank of the code C1 generated by H0 is 2, and thus C(H0) = C1
⊥

will have rank 3−2 = 1. A straightforward computation yields C(H0) =
〈(1, 1,−(D + 1))〉 and

C(H0)
⊥ = {((D + 1)γ − β, β, γ) | β, γ ∈ P}.

Therefore we see that H0 is not a parity check matrix of C(H0) since
it does not generate the codeword (−1, 1, 0) ∈ C(H0)

⊥, for example. A
parity check matrix of C(H0) can be given by(

−1 1 0
D + 1 0 1

)
, or

(
−1 1 0
D 1 1

)
.

We shall present another way of describing basic codes in terms of
their generator matrices. For a vector u = (u1, . . . , ur) ∈ Pr, we denote

c(u) = gcd{u1, · · · , ur}.

It is clear that

c(αu) = αc(u)

for any α ∈ P, and

c(u) | c(uG)

for any r × s matrix G over P, since the components of uG are linear
combinations of the components of u. In addition, we can write

u = c(u)u0, with c(u0) = 1.

Lemma 2.5. Let {gi} be the rows of the generator matrix G of a basic
code C. Then c(gi) = 1 for all i.
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Proof. Suppose gi0 = βf for some β ∈ P = Fq[D]. Since C is basic,

we have f ∈ C. Write f =
∑k

i=1 αigi. We then have

βα1g1 + · · ·+ (βαi0 − 1)gi0 + · · ·+ βαkgk = 0,

which implies that βαi0 − 1 = 0. Thus β ∈ F∗
q and hence c(gi0) = 1.

The converse of the above lemma is not true. For example, let C be
the code with generator matrix G = ( 1 D

D 1 ). So c(1, D) = c(D, 1) = 1.
But G′ =

(
1 D

D+1 1+D

)
is also a generator matrix with c(D + 1, D + 1) =

D + 1 6= 1. Thus C is not basic. In fact, since rank C = 2, we have
C⊥ = {0} and (C⊥)⊥ = P2 6= C.

Theorem 2.6. Let G be a generator matrix of an [n, k]-code C over
P. Then C is basic iff one of the following conditions is satisfied.

i. c(u) = 1 ⇒ c(uG) = 1 for all u ∈ Pk.
ii. c(u) = c(uG) for all u ∈ Pk.

Proof. (basic) ⇐⇒ (i). First note that uG ∈ C for all u, and if
u1G = u2G then u1 = u2. Assume that C is basic and c(u) = 1. Let
uG = αv for some α ∈ P. Since C is basic, we have v ∈ C so that
v = wG for some w. Thus uG = αv = αwG, which implies u = αw.
Since c(u) = 1, we have α ∈ Fq and hence c(uG) = 1. Conversely,
suppose αv ∈ C. There exists some u such that αv = uG. Write
u = c(u)u0 with c(u0) = 1. Since c(u0G) = 1 by (i) and αv = c(u)u0G,
we have c(αv) = c(u). Hence αv = c(u)u0G = c(αv)u0G = αc(v)u0G.
Consequently, v = c(v)u0G ∈ C.

(i) ⇐⇒ (ii). Write u = c(u)u0 with c(u0) = 1. Then c(uG) =
c(u)c(u0G). Thus the proof follows from the fact that c(u0G) = 1 iff
c(u) = c(uG).

3. Characterizations of basic codes

We now recall the definitions and facts about basic matrices over P,
which play important roles in the theory of convolutional codes.

Definition 3.1. A k×n matrix G over P is said to be basic if G has
a (polynomial) right inverse, that is, if there exists an n × k matrix M
over P such that GM = Ik.

There are other characterizations of basic matrices as follows [1].
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Theorem 3.2. A k × n matrix G = G(D) over Fq[D] is basic iff one
of the following conditions is satisfied.

i. The invariant factors of G are all 1.
ii. The gcd of the k × k minors of G is 1.
iii. G(α) has rank k for any α in the algebraic closure of Fq.
iv. If uG ∈ Fq[D]n for u ∈ Fq(D)k, then u ∈ Fq[D]k.

v. There exists an (n−k)×n matrix L such that det

(
G
L

)
is a nonzero

element of Fq.

It turns out that basic codes are exactly those generated by basic
matrices.

Theorem 3.3. Let G be a generator matrix of a convolutional code
C. Then C is basic iff G is basic.

Proof. Assume that the k × n matrix G generates a basic code. Sup-
pose uG ∈ Pn for u ∈ Fq(x)k. There exists α ∈ P such that v = αu ∈ Pk.
Write v = c(v)v0 for some v0 ∈ Pk. Now Theorem 2.6 implies

αc(uG) = c(αuG) = c(vG) = c(v).

Thus α | c(v) and then u = 1
α
v = c(v)

α
v0 ∈ Pk. Therefore, G is basic by

Theorem 3.2(iv). Conversely, suppose that G is basic so that there is a
matrix M such that GM = Ik. Let αv ∈ C. Then αv = uG for some u,
and αvM = uGM = u. Thus αv = uG = (αvM)G = α(vMG), which
implies that v = (vM)G ∈ C.

Corollary 3.4. If C1 is basic and C2 is equivalent to C1, then C2 is
also basic.

Proof. Let Gi be generator matrices for Ci. The theorem follows from
Theorem 3.2(ii) and the fact that the minors for G1 and G2 are the same
up to ±1.

Example 3.5. The matrices in this example are taken from [1]. Let

G4 =

(
1 D 1 + D 1
0 1 + D D 0

)
be a matrix over F2[D]. The matrix G4 is basic since G has 1 = det I2

as a 2× 2 minor. By Theorem 3.3, G4 generates a basic code C. Let

G5 =

(
1 + D 0 1 D

D 1 + D + D2 D2 1

)
.
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For u = (1 + D, 1), uG5 = (1 + D + D2)(1, 1, 1, 1). Thus the code
generated by G5 is not basic by Theorem 2.6. Nevertheless, we note
that the matrices G4 and G5 generate the same code over F2(D), the
quotient field of F2[D].

Theorem 3.6. i. Self-dual codes are basic.
ii. If C is a basic self-orthogonal [2k, k]-code, then C is self-dual.

Proof. (i) If C⊥ = C, then (C⊥)⊥ = C⊥ = C.
(ii) Suppose that v ∈ C⊥. Since C ⊂ C⊥ and rank C⊥ = 2k − k = k =

rank C, it follows from Lemma 2.2 that αv ∈ C for some α ∈ P. As C is
basic, we have v ∈ C.
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