BASIC CODES OVER POLYNOMIAL RINGS

Young Ho Park

Abstract

We study codes over the polynomial ring $\mathbb{F}_{q}[D]$ and introduce the notion of basic codes which play a fundamental role in the theory.

1. Codes over polynomial rings

A code of length n over a ring R (finite or infinite) is a subset of R^{n}. If the code is a submodule of the ambient space then it is a linear code. We will always assume that codes are linear. The Hamming weight wt(v) of a vector \mathbf{v} is the number of non-zero coordinates in that vector. The minimum distance of a code \mathcal{C}, denoted by $d(\mathcal{C})$, is the smallest of all non-zero weights in the code. To the ambient space R^{n} we attach the inner product

$$
\begin{equation*}
[\mathbf{v}, \mathbf{w}]=\sum v_{i} w_{i} \tag{1}
\end{equation*}
$$

where $\mathbf{v}=\left(v_{i}\right), \mathbf{w}=\left(w_{i}\right)$. We define the dual code of \mathcal{C} to be

$$
\begin{equation*}
\mathcal{C}^{\perp}=\{\mathbf{v} \mid[\mathbf{v}, \mathbf{w}]=0 \text { for all } \mathbf{w} \in \mathcal{C}\} . \tag{2}
\end{equation*}
$$

A code \mathcal{C} satisfying $\mathcal{C}=\mathcal{C}^{\perp}$ is called a self-dual code. See [2] for general theory on codes and [3] on self-dual codes.

Let \mathbb{F}_{q} be the field of q elements, and throughout this paper let

$$
\mathrm{P}=\mathbb{F}_{q}[D]
$$

denote the infinite ring of polynomials in one indeterminate D over \mathbb{F}_{q}. The elements of the finite ring

$$
\mathrm{P}_{m}=\mathbb{F}_{q}[D] /\left(D^{m}\right)
$$

Received June 04, 2007.
2000 Mathematics Subject Classification: 94B10, 94B05.
Key words and phrases: linear codes, codes over polynomial rings.
are identified with polynomials $a_{0}+a_{1} D+a_{2} D^{2}+\cdots+a_{m-1} D^{m-1}$ of degree less than m. This ring is a commutative ring with q^{m} elements. We sometimes view P_{m} as a subset of P_{r} for $r>m$, and of P by assuming all coefficients of D^{i} are 0 for $i>m$. The units of P are precisely the non-zero elements of degree 0 , i.e., $\mathrm{P}^{*}=\mathbb{F}_{q}-\{0\}$, while the units of P_{m} are polynomials with a nonzero constant term, i.e., $\mathrm{P}_{m}^{*}=\left\{a_{0}+\right.$ $\left.a_{1} D+a_{2} D^{2}+\cdots+a_{m-1} D^{m-1} \mid a_{0} \neq 0\right\}$. Since P is a principal ideal domain, any code \mathcal{C} of length n over P is a free module of rank $k \leq n$. In this case, we shall write $\operatorname{rank} \mathcal{C}=k$. If $\mathcal{C}_{1} \subset \mathcal{C}_{2}$ are codes over P , then $\operatorname{rank} \mathcal{C}_{1} \leq \operatorname{rank} \mathcal{C}_{2}$. A code \mathcal{C} of length n and rank k is said to be an [$n, k]$-code, or $[n, k, d]$-code if the minimum distance of \mathcal{C} is d. A $k \times n$ matrix whose rows form a basis of $[n, k]$-code \mathcal{C} is called a generator matrix of \mathcal{C}. A generator matrix of \mathcal{C}^{\perp} is called a parity check matrix of \mathcal{C}.

Lemma 1.1. For a code \mathcal{C} of length over P , we have

$$
\operatorname{rank} \mathcal{C}^{\perp}+\operatorname{rank} \mathcal{C}=n
$$

Proof. Let $\mathbf{g}_{1}, \cdots, \mathbf{g}_{k}$ be the rows of a generator matrix of \mathcal{C}, and let $\hat{\mathcal{C}}=\mathcal{C} \otimes_{\mathbb{F}_{q}[D]} \mathbb{F}_{q}(D)$ be the code generated by $\left\{\mathbf{g}_{i}\right\}$ over the quotient field $\mathbb{F}_{q}(D)$ of $\mathrm{P}=\mathbb{F}_{q}[D]$. Thus $\operatorname{rank} \hat{\mathcal{C}}=\operatorname{dim}_{\mathbb{F}_{q}(D)} \hat{\mathcal{C}}=k$. Since $\hat{\mathcal{C}}$ is a code over a field, we know that $\operatorname{dim}_{\mathbb{F}_{q}(D)} \hat{\mathcal{C}}^{\perp}=n-k$, where

$$
\hat{\mathcal{C}}^{\perp}=\left\{\mathbf{v} \in \mathbb{F}_{q}(D)^{n} \mid\left[\mathbf{v}, \mathbf{g}_{i}\right]=0 \text { for all } i\right\} .
$$

It is easy to check that the "integral" vectors $\mathbf{f}_{1}, \cdots, \mathbf{f}_{k} \in \mathrm{P}^{n}$ are linearly independent over $\mathbb{F}_{q}(D)$ iff they are linearly independent over P . Note that $\hat{\mathcal{C}}^{\perp} \cap \mathrm{P}^{n} \subset \mathcal{C}^{\perp}$. Let $\hat{\mathbf{h}}_{1}, \cdots, \hat{\mathbf{h}}_{n-k} \in \mathbb{F}_{q}(D)^{n}$ be a basis for $\hat{\mathcal{C}}^{\perp}$. There are elements $\beta_{i} \in \mathbf{P}$ such that $\beta_{i} \hat{\mathbf{h}}_{i} \in \mathrm{P}^{n}$. Thus the $\beta_{i} \hat{\mathbf{h}}_{i}$ are in \mathcal{C}^{\perp} and they are linearly independent over P as well as over $\mathbb{F}_{q}(D)$. Hence $n-k \leq \operatorname{rank} \mathcal{C}^{\perp}$. Conversely, if $\mathbf{h}_{1}, \cdots, \mathbf{h}_{s}$ is a basis for \mathcal{C}^{\perp}, then they are in $\hat{\mathcal{C}}^{\perp}$ and linearly independent over $\mathbb{F}_{q}(D)$. Thus $\operatorname{rank} \mathcal{C}^{\perp} \leq n-k$. The lemma is proved.

From the lemma, we obtain

$$
\begin{equation*}
\operatorname{rank} \mathcal{C}=\operatorname{rank}\left(\mathcal{C}^{\perp}\right)^{\perp} \tag{3}
\end{equation*}
$$

Furthermore, if \mathcal{C} is a self-dual $[n, k]$-code over P , then $n=2 k$.

2. Basic codes

For codes \mathcal{C} over P , which are codes over an infinite ring $\mathbb{F}_{q}[D]$, we do not always have $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$. For example, let $\mathcal{C}=\left(D^{m}\right)$ be the code of length 1 generated by D^{m}. Then $\mathcal{C}^{\perp}=\{0\}$ and $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathrm{P}$, which is much larger than $\mathcal{C}=\left(D^{m}\right)$. Nevertheless, it is always true that

$$
\begin{equation*}
\mathcal{C} \subset\left(\mathcal{C}^{\perp}\right)^{\perp} \tag{4}
\end{equation*}
$$

Definition 2.1. A code \mathcal{C} over P is said to be basic if $\mathcal{C}=\left(\mathcal{C}^{\perp}\right)^{\perp}$.
Lemma 2.2. Let $\mathcal{C}_{1} \subset \mathcal{C}_{2}$ be codes over P of the same rank. If $\mathbf{v} \in \mathcal{C}_{2}$, then $\alpha \mathbf{v} \in \mathcal{C}_{1}$ for some nonzero $\alpha \in \mathrm{P}$.

Proof. Let $\operatorname{rank} \mathcal{C}_{1}=k$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}\right\}$ be a basis for \mathcal{C}_{1}. Since

$$
\operatorname{rank} \mathcal{C}_{2} \geq \operatorname{rank}\left\langle\mathcal{C}_{1}, \mathbf{v}\right\rangle \geq \operatorname{rank} \mathcal{C}_{1}=\operatorname{rank} \mathcal{C}_{2},
$$

we have $\operatorname{rank}\left\langle\mathcal{C}_{1}, \mathbf{v}\right\rangle=k$. Thus the $k+1$ vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \cdots, \mathbf{w}_{k}$ and \mathbf{v} are linearly dependent over \mathbf{P}. Hence there is a dependence relation $\alpha_{1} \mathbf{w}_{1}+\cdots+\alpha_{k} \mathbf{w}_{k}+\alpha \mathbf{v}=0$, and thus $\alpha \mathbf{v} \in \mathcal{C}_{1}$. Finally, $\alpha \neq 0$ since if $\alpha=0$ then $\alpha_{i}=0$ for all i.

Theorem 2.3. The following conditions are equivalent for a code \mathcal{C} over P .
i. \mathcal{C} is basic.
ii. $\alpha \mathbf{v} \in \mathcal{C}$ implies $\mathbf{v} \in \mathcal{C}$ for any nonzero $\alpha \in \mathrm{P}$.

Proof. Suppose \mathcal{C} is basic. If $\alpha \mathbf{v} \in \mathcal{C}$, then $[\alpha \mathbf{v}, \mathbf{w}]=0$ for all $\mathbf{w} \in \mathcal{C}^{\perp}$, which implies $[\mathbf{v}, \mathbf{w}]=0$ for all $\mathbf{w} \in \mathcal{C}^{\perp}$ since P is an integral domain, and thus $\mathbf{v} \in\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$. The converse follows from the previous lemma, (3) and (4).

Remark. Theorem 2.3 is true for any code of finite rank over a principal ideal domain.

Corollary 2.4. A code \mathcal{C} over P is basic iff \mathcal{C} is a dual code of some code over P.

Proof. If $\mathcal{C}=\mathcal{C}_{1}^{\perp}$ and $\alpha \mathbf{v} \in \mathcal{C}$, then $\mathbf{0}=[\alpha \mathbf{v}, \mathbf{w}]=\alpha[\mathbf{v}, \mathbf{w}]$ for all $\mathbf{w} \in$ \mathcal{C}_{1} and hence $[\mathbf{v}, \mathbf{w}]=\mathbf{0}$ for all $\mathbf{w} \in \mathcal{C}_{1}$, which implies that $\mathbf{v} \in \mathcal{C}_{1}^{\perp}=\mathcal{C}$. The converse is clear.

This corollary provides us a way of constructing basic codes. Indeed, the basic codes of length n are exactly the codes defined by an $s \times n$ matrix H_{0} as

$$
\mathcal{C}\left(H_{0}\right)=\left\{\mathbf{v} \in \mathrm{P}^{n} \mid H_{0} \mathbf{v}^{T}=0\right\},
$$

i.e., the solutions sets to a family of linear equations. $\mathcal{C}\left(H_{0}\right)$ is then basic, since it is dual to the code generated by the rows of H_{0}. Note that H_{0} is not necessarily a parity check matrix of $\mathcal{C}\left(H_{0}\right)$ even if the row vectors of H_{0} are linearly independent. For example, take

$$
H_{0}=\left(\begin{array}{ccc}
1 & D & 1 \\
D & 1 & 1
\end{array}\right)
$$

The rank of the code \mathcal{C}_{1} generated by H_{0} is 2 , and thus $\mathcal{C}\left(H_{0}\right)=\mathcal{C}_{1}{ }^{\perp}$ will have rank $3-2=1$. A straightforward computation yields $\mathcal{C}\left(H_{0}\right)=$ $\langle(1,1,-(D+1))\rangle$ and

$$
\mathcal{C}\left(H_{0}\right)^{\perp}=\{((D+1) \gamma-\beta, \beta, \gamma) \mid \beta, \gamma \in \mathrm{P}\} .
$$

Therefore we see that H_{0} is not a parity check matrix of $\mathcal{C}\left(H_{0}\right)$ since it does not generate the codeword $(-1,1,0) \in \mathcal{C}\left(H_{0}\right)^{\perp}$, for example. A parity check matrix of $\mathcal{C}\left(H_{0}\right)$ can be given by

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
D+1 & 0 & 1
\end{array}\right), \text { or }\left(\begin{array}{ccc}
-1 & 1 & 0 \\
D & 1 & 1
\end{array}\right)
$$

We shall present another way of describing basic codes in terms of their generator matrices. For a vector $\mathbf{u}=\left(u_{1}, \ldots, u_{r}\right) \in \mathrm{P}^{r}$, we denote

$$
c(\mathbf{u})=\operatorname{gcd}\left\{u_{1}, \cdots, u_{r}\right\} .
$$

It is clear that

$$
c(\alpha \mathbf{u})=\alpha c(\mathbf{u})
$$

for any $\alpha \in \mathrm{P}$, and

$$
c(\mathbf{u}) \mid c(\mathbf{u} G)
$$

for any $r \times s$ matrix G over P , since the components of $\mathbf{u} G$ are linear combinations of the components of \mathbf{u}. In addition, we can write

$$
\mathbf{u}=c(\mathbf{u}) \mathbf{u}_{0}, \text { with } c\left(\mathbf{u}_{0}\right)=1
$$

Lemma 2.5. Let $\left\{\mathbf{g}_{i}\right\}$ be the rows of the generator matrix G of a basic code \mathcal{C}. Then $c\left(\mathbf{g}_{i}\right)=1$ for all i.

Proof. Suppose $\mathbf{g}_{i_{0}}=\beta \mathbf{f}$ for some $\beta \in \mathbf{P}=\mathbb{F}_{q}[D]$. Since \mathcal{C} is basic, we have $\mathbf{f} \in \mathcal{C}$. Write $\mathbf{f}=\sum_{i=1}^{k} \alpha_{i} \mathbf{g}_{i}$. We then have

$$
\beta \alpha_{1} \mathbf{g}_{1}+\cdots+\left(\beta \alpha_{i_{0}}-1\right) \mathbf{g}_{i_{0}}+\cdots+\beta \alpha_{k} \mathbf{g}_{k}=0
$$

which implies that $\beta \alpha_{i_{0}}-1=0$. Thus $\beta \in \mathbb{F}_{q}^{*}$ and hence $c\left(\mathbf{g}_{i_{0}}\right)=1$.
The converse of the above lemma is not true. For example, let \mathcal{C} be the code with generator matrix $G=\left(\begin{array}{cc}1 & D \\ D & 1\end{array}\right)$. So $c(1, D)=c(D, 1)=1$. But $G^{\prime}=\left(\begin{array}{cc}1 & D \\ D+1 & 1+D\end{array}\right)$ is also a generator matrix with $c(D+1, D+1)=$ $D+1 \neq 1$. Thus \mathcal{C} is not basic. In fact, since $\operatorname{rank} \mathcal{C}=2$, we have $\mathcal{C}^{\perp}=\{0\}$ and $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathrm{P}^{2} \neq \mathcal{C}$.

Theorem 2.6. Let G be a generator matrix of an $[n, k]$-code \mathcal{C} over P . Then \mathcal{C} is basic iff one of the following conditions is satisfied.
i. $c(\mathbf{u})=1 \Rightarrow c(\mathbf{u} G)=1$ for all $\mathbf{u} \in \mathrm{P}^{k}$.
ii. $c(\mathbf{u})=c(\mathbf{u} G)$ for all $\mathbf{u} \in \mathbf{P}^{k}$.

Proof. (basic) \Longleftrightarrow (i). First note that $\mathbf{u} G \in \mathcal{C}$ for all \mathbf{u}, and if $\mathbf{u}_{1} G=\mathbf{u}_{2} G$ then $\mathbf{u}_{1}=\mathbf{u}_{2}$. Assume that \mathcal{C} is basic and $c(\mathbf{u})=1$. Let $\mathbf{u} G=\alpha \mathbf{v}$ for some $\alpha \in \mathrm{P}$. Since \mathcal{C} is basic, we have $\mathbf{v} \in \mathcal{C}$ so that $\mathbf{v}=\mathbf{w} G$ for some \mathbf{w}. Thus $\mathbf{u} G=\alpha \mathbf{v}=\alpha \mathbf{w} G$, which implies $\mathbf{u}=\alpha \mathbf{w}$. Since $c(\mathbf{u})=1$, we have $\alpha \in \mathbb{F}_{q}$ and hence $c(\mathbf{u} G)=1$. Conversely, suppose $\alpha \mathbf{v} \in \mathcal{C}$. There exists some \mathbf{u} such that $\alpha \mathbf{v}=\mathbf{u} G$. Write $\mathbf{u}=c(\mathbf{u}) \mathbf{u}_{0}$ with $c\left(\mathbf{u}_{0}\right)=1$. Since $c\left(\mathbf{u}_{0} G\right)=1$ by (i) and $\alpha \mathbf{v}=c(\mathbf{u}) \mathbf{u}_{0} G$, we have $c(\alpha \mathbf{v})=c(\mathbf{u})$. Hence $\alpha \mathbf{v}=c(\mathbf{u}) \mathbf{u}_{0} G=c(\alpha \mathbf{v}) \mathbf{u}_{0} G=\alpha c(\mathbf{v}) \mathbf{u}_{0} G$. Consequently, $\mathbf{v}=c(\mathbf{v}) \mathbf{u}_{0} G \in \mathcal{C}$.
(i) \Longleftrightarrow (ii). Write $\mathbf{u}=c(\mathbf{u}) \mathbf{u}_{0}$ with $c\left(\mathbf{u}_{0}\right)=1$. Then $c(\mathbf{u} G)=$ $c(\mathbf{u}) c\left(\mathbf{u}_{0} G\right)$. Thus the proof follows from the fact that $c\left(\mathbf{u}_{0} G\right)=1$ iff $c(\mathbf{u})=c(\mathbf{u} G)$.

3. Characterizations of basic codes

We now recall the definitions and facts about basic matrices over P , which play important roles in the theory of convolutional codes.

Definition 3.1. A $k \times n$ matrix G over P is said to be basic if G has a (polynomial) right inverse, that is, if there exists an $n \times k$ matrix M over P such that $G M=I_{k}$.

There are other characterizations of basic matrices as follows [1].

Theorem 3.2. $A k \times n$ matrix $G=G(D)$ over $\mathbb{F}_{q}[D]$ is basic iff one of the following conditions is satisfied.
i. The invariant factors of G are all 1 .
ii. The gcd of the $k \times k$ minors of G is 1 .
iii. $G(\alpha)$ has rank k for any α in the algebraic closure of \mathbb{F}_{q}.
iv. If $\mathbf{u} G \in \mathbb{F}_{q}[D]^{n}$ for $\mathbf{u} \in \mathbb{F}_{q}(D)^{k}$, then $\mathbf{u} \in \mathbb{F}_{q}[D]^{k}$.
v. There exists an $(n-k) \times n$ matrix L such that $\operatorname{det}\binom{G}{L}$ is a nonzero element of \mathbb{F}_{q}.

It turns out that basic codes are exactly those generated by basic matrices.

Theorem 3.3. Let G be a generator matrix of a convolutional code \mathcal{C}. Then \mathcal{C} is basic iff G is basic.

Proof. Assume that the $k \times n$ matrix G generates a basic code. Suppose $\mathbf{u} G \in \mathrm{P}^{n}$ for $\mathbf{u} \in \mathbb{F}_{q}(x)^{k}$. There exists $\alpha \in \mathrm{P}$ such that $\mathbf{v}=\alpha \mathbf{u} \in \mathrm{P}^{k}$. Write $\mathbf{v}=c(\mathbf{v}) \mathbf{v}_{0}$ for some $\mathbf{v}_{0} \in \mathbf{P}^{k}$. Now Theorem 2.6 implies

$$
\alpha c(\mathbf{u} G)=c(\alpha \mathbf{u} G)=c(\mathbf{v} G)=c(\mathbf{v})
$$

Thus $\alpha \mid c(\mathbf{v})$ and then $\mathbf{u}=\frac{1}{\alpha} \mathbf{v}=\frac{c(\mathbf{v})}{\alpha} \mathbf{v}_{0} \in \mathrm{P}^{k}$. Therefore, G is basic by Theorem 3.2(iv). Conversely, suppose that G is basic so that there is a matrix M such that $G M=I_{k}$. Let $\alpha \mathbf{v} \in \mathcal{C}$. Then $\alpha \mathbf{v}=\mathbf{u} G$ for some \mathbf{u}, and $\alpha \mathbf{v} M=\mathbf{u} G M=\mathbf{u}$. Thus $\alpha \mathbf{v}=\mathbf{u} G=(\alpha \mathbf{v} M) G=\alpha(\mathbf{v} M G)$, which implies that $\mathbf{v}=(\mathbf{v} M) G \in \mathcal{C}$.

Corollary 3.4. If \mathcal{C}_{1} is basic and \mathcal{C}_{2} is equivalent to \mathcal{C}_{1}, then \mathcal{C}_{2} is also basic.

Proof. Let G_{i} be generator matrices for \mathcal{C}_{i}. The theorem follows from Theorem 3.2(ii) and the fact that the minors for G_{1} and G_{2} are the same up to ± 1.

Example 3.5. The matrices in this example are taken from [1]. Let

$$
G_{4}=\left(\begin{array}{cccc}
1 & D & 1+D & 1 \\
0 & 1+D & D & 0
\end{array}\right)
$$

be a matrix over $\mathbb{F}_{2}[D]$. The matrix G_{4} is basic since G has $1=\operatorname{det} I_{2}$ as a 2×2 minor. By Theorem 3.3, G_{4} generates a basic code \mathcal{C}. Let

$$
G_{5}=\left(\begin{array}{cccc}
1+D & 0 & 1 & D \\
D & 1+D+D^{2} & D^{2} & 1
\end{array}\right)
$$

For $\mathbf{u}=(1+D, 1), \mathbf{u} G_{5}=\left(1+D+D^{2}\right)(1,1,1,1)$. Thus the code generated by G_{5} is not basic by Theorem 2.6. Nevertheless, we note that the matrices G_{4} and G_{5} generate the same code over $\mathbb{F}_{2}(D)$, the quotient field of $\mathbb{F}_{2}[D]$.

Theorem 3.6. i. Self-dual codes are basic.
ii. If \mathcal{C} is a basic self-orthogonal $[2 k, k]$-code, then \mathcal{C} is self-dual.

Proof. (i) If $\mathcal{C}^{\perp}=\mathcal{C}$, then $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}^{\perp}=\mathcal{C}$.
(ii) Suppose that $\mathbf{v} \in \mathcal{C}^{\perp}$. Since $\mathcal{C} \subset \mathcal{C}^{\perp}$ and $\operatorname{rank} \mathcal{C}^{\perp}=2 k-k=k=$ $\operatorname{rank} \mathcal{C}$, it follows from Lemma 2.2 that $\alpha \mathbf{v} \in \mathcal{C}$ for some $\alpha \in \mathrm{P}$. As \mathcal{C} is basic, we have $\mathbf{v} \in \mathcal{C}$.

References

[1] R.J. McEliece, The algebraic theory of convolutional codes, Handbook of Coding Theory (V.S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, 11651138.
[2] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
[3] E.Rains and N.J.A. Sloane, Self-dual codes, Handbook of Coding Theory (V.S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, 177-294.

Department of Mathematics
Kangwon National University
Chuncheon, Korea 200-701
E-mail: yhpark@kangwon.ac.kr

