Synthesis and characterization of $SnO_2$ nanowires on Si substrates in a thermal chemical vapor deposition process

열화학기상증착법을 이용한 Si 기판 위의 $SnO_2$ 나노와이어 제작 및 물성평가

  • Lee, Deuk-Hee (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Park, Hyun-Kyu (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sam-Dong (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Jeong, Soon-Wook (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Kim, Sang-Woo (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology)
  • 이득희 (금오공과대학교 신소재시스템공학부) ;
  • 박현규 (금오공과대학교 신소재시스템공학부) ;
  • 이삼동 (금오공과대학교 신소재시스템공학부) ;
  • 정순욱 (금오공과대학교 신소재시스템공학부) ;
  • 김상우 (금오공과대학교 신소재시스템공학부)
  • Published : 2007.06.30

Abstract

Single-crystalline $SnO_2$ nanowires were successfully grown on Si(001) substrates via vapor-liquid-solid mechanism in a thermal chemical vapor deposition. Large quantity of $SnO_2$ nanowires were synthesized at temperature ranges of $950{\sim}1000^{\circ}C$ in Ar atmosphere. It was found that the grown $SnO_2$ nanowires are of a tetragonal rutile structure and single crystalline by diffraction and transmission electron microscopy measurements. Broad emission located at about 600 m from the grown nanowires was clearly observed in room temperature photoluminescence measurements, indicating that the emission band originated from defect level transition into $SnO_2$ nanowires.

Vapor liquid solid 기구에 의한 열화학기상증착법을 이용하여 Si (001) 기판 위에 $SnO_2$ 나노와이어를 성장시켰다. Au 박막 (3 nm)을 성장을 위한 촉매로 사용하여 Si(001) 기판 이에 순수 SnO powder (purity, 99.9%)를 반응 원료로 대기압 하 $950{\sim}100^{\circ}C$ 온도 범위, $750{\sim}800\;sccm$ 아르곤 분위기에서 $SnO_2$ 나노와이어를 성장시켰다. X-ray diffraction 분석을 통해 성장한 $SnO_2$ 나노와이어가 tetragonal rutile 구조임을 확인하였고, transmission electron microscopy 분석을 통해 단일 나노와이어의 결정 특성을 분석하였다. 또한, 상온 photoluminescence 분석을 통해 나노와이어 샘플로부터 600 nm 부근에서 나타나는 defect level 천이에 의한 넓은 emission band를 확인함으로써 성장한 나노와이어 $SnO_2$임을 확인하였다.

Keywords

References

  1. Z.W. Pan, Z.R. Dai and Z.L. Wang, 'Nanobelts of Semiconducting Oxides', Science 291 (2001) 1947 https://doi.org/10.1126/science.1058120
  2. Y.X Chen, L.J. Campbell and W.L. Zhou, 'Tempera- ture-controlled growth of ZnO nanostructures: branched nanobelts and wide nanosheets', J. Cryst. Growth 270 (2004) 505 https://doi.org/10.1016/j.jcrysgro.2004.07.011
  3. J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An and G.C. Yi, 'Synthesis and characterization of high-quality $In_2O_3$ nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature', Chem. Phys. Lett. 384 (2004) 246 https://doi.org/10.1016/j.cplett.2003.12.027
  4. Z. Hu, M.D. Fischbein, C. Quemer and M. Dmdic, 'Electrical-field-driven accumulation and alignment of CdSe and CdTe nanorods in nanoscale', Nano Letter 6 (2006) 2585 https://doi.org/10.1021/nl0620379
  5. G. Ansari, R.C. Aiyer, R.N. Karekar, S.K. Kulkmi and S.R. Sainkar, 'Grain size effects on Hz gas sensitivity of thick film resistor using $SnO_2$ nanoparticles', Thin Soild Films 295 (1997) 271 https://doi.org/10.1016/S0040-6090(96)09152-3
  6. X.Y. Zhang, L.D. Zhang, W. Chen, M.J. Zheng, G. W. Meng and L.X. Zhao, 'Electrochemical fabrication of highly ordered semiconductor and metallic nanowire arrays', Chem. Mater. 13 (2001) 2511 https://doi.org/10.1021/cm0007297
  7. M.S. Arnold, P. Avouris, Z.W. Pan and Z.L. Wang, 'Field-effect transistors based on single semiconducting oxide nanobelts', J. Phys. Chem. B 107 (2003) 659 https://doi.org/10.1021/jp0271054
  8. M.H. Huang, S. Mao, H. Feick, H. Yan., Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang., 'Room-temperature ultraviolet nanowire nanolasers', Science 292 (2001) 1897 https://doi.org/10.1126/science.1060367
  9. S.-W Kim, Sz. Fujita and Sg. Fujita, 'ZnO nanowires with high aspect ratios grown by. metal organic chemical vapor deposition using gold nanoparticles', Appl. Phys. Lett. 86 (2005) 153119 https://doi.org/10.1063/1.1883320
  10. J.-S. Lee, S.-K. Sim, B. Min, K. Cho, S.W. Kim and S.Kim, 'Structural and optoelectronic properties of $SnO_2$ nanowires synthesized from ball-milled $SnO_2$ powders', J. Cryst. Growth 267 (2004) 145 https://doi.org/10.1016/j.jcrysgro.2004.03.030
  11. S. Luo, J. Fan, W Liu, M. Zhang, I. Song, C. Lin, X. Wu and P.K. Chu, 'Synthesis and low-temperature photoluminescence properties SnOz nanowires and nanobelts', Nanotechnology 17 (2006) 1695 https://doi.org/10.1088/0957-4484/17/6/025
  12. H.K. Park, M.H. Oh, S.W. Kim, G.H. Kim, D.H. Youn, S.Y. Lee, S.H. Kim, K.C. Kim and S.L. Maeng, 'Vertically well-aligned ZnO nanowires $c-Al_2O_3$ and GaN substrates by Au catalyst', ETRI J. 28 (2006) 787 https://doi.org/10.4218/etrij.06.0206.0138
  13. Jr. H. He, Te H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou and Z.L. Wang, 'Beaklike $SnO_2 $ nanorods with strong photoluminescent and field-emission properties', Small 2 (2006) 116 https://doi.org/10.1002/smll.200500210