DOI QR코드

DOI QR Code

Optical flow of heart images by image-flow conservation equation and functional expansion

영상유체보존식과 함수전개법에 의한 심장영상의 광류

  • 김진우 (경성대학교 멀티미디어통신공학과)
  • Published : 2007.07.31

Abstract

The displacement field (Optical flow) has been calculated by bottom-up approaches based on local processing. In contrast with them, in this paper, a top-down approach based on expanding in turn from the lowest order mode the whole motion in an image pair of sequential images is proposed. The intensity of medical images usually represents a quantity which is conserved during the motion. Hence sequential images are ideally related by a coordinate transformation. The displacement field can be determined from the generalized moments of the two images. The equations which transform arbitrary generalized moments from a source image to a target image are expressed as a function of the displacement field. The appareent displacement field is then computed iteratively by a projection method which utilizes the functional derivatives of the linearized moment equations. This method is demonstrated using a pair of sequential heart images. For comparative evaluation, we applied Horn and Schunck's method, a standard multigrid method, and our proposed algorithm to sequential image.

기존의 광류 (Optical flow)는 국소적 처리를 시작점으로 하는 bottom-up수법에 의해서 구하였다. 이에 반해, 본 논문은 영상유체보존식과 함수 전개법에 의해 영상 전체의 움직임을 차수가 낮은 모드로 부터 순차적으로 전개하는 bottom-down수법을 새로운 수법으로 제안한다. 의료 영상에 있어서 명도는 움직임이 있어도 불변으로 유지하려는 경우가 많다. 그러나 이 같은 영상계열에서의 움직임은 좌표 변환에 의해서 대응된다. 본 수법의 경우 광류는 선형모멘트방정식의 함수에 관한 도함수를 이용하는 투영법에 의해서 반복계산으로 구하여 진다. 본 논문에서는 심장의 영상계열을 이용하여 기존의 Horn and Schunck기법, Standard multigrid기법과 본 수법의 알고리즘을 비교 평가하여 유효성을 나타낸다.

Keywords

References

  1. B.K.P. Horn and B.G. Schunck, 'Determining optical flow,' Artif. Intell., vol. 17, pp. 185-204, 1981 https://doi.org/10.1016/0004-3702(81)90024-2
  2. J.L. Prince and E.R. McVeigh, 'Motion estimation from tagged MR image sequences,' IEEE Trans. Med. Imag., vol. 11, no. 2, pp. 238-249, 1992 https://doi.org/10.1109/42.141648
  3. L.M. Bregman, 'Finding the common point of convex sets by the method of successive projection,' Dokl. Akad. Nauk SSSR, vol. 162, no. 3, pp.487-490, 1965
  4. L.G. Gubin, B.T. Polyak, and E.V. Raik, 'The method fo projections for finding the common point of convex sets,' U.S.S.R. Computational Math. Math. Phys., vol. 7, no. 6, pp. 1-24, 1967
  5. D.C. YouIa and H. Webb, 'Image restoration by the method of convex projections: part l-Theory,' IEEE Trans. Med. Imag., vol. MI-I, pp. 81-94, 1982
  6. S.V. Fogel, 'The estimation of velocity vector fields from time-varying image sequences,' CVGIP: Image Understanding, vol. 53, no. 3, pp. 253-287, 1991 https://doi.org/10.1016/1049-9660(91)90015-H
  7. W. Enkelmann, 'Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences,' Comput. Vision Graphics Image Process., vol. 42, pp. 150-177, 1988
  8. R. Battiti, E. Amaldi, and C. Koch, 'Computing optical flow across multiple scales: an adaptive course-to-fme strategy,' Int. J. Comput. Vision, vol. 6, no. 2, pp. 133-145, 1991 https://doi.org/10.1007/BF00128153