Degradation Characteristics of Perfluoropolyether Lubricant for Computer Hard Disk

컴퓨터 하드디스크 윤활제로 사용되는 Perfluoropolyether의 분해거동

  • Lee, Ji-Hye (Department of Polymer Science & Engineering, Dankook University) ;
  • Chun, Sang-Wook (Department of Polymer Science & Engineering, Dankook University) ;
  • Kang, Ho-Jong (Department of Polymer Science & Engineering, Dankook University)
  • 이지혜 (단국대학교 고분자공학과) ;
  • 천상욱 (단국대학교 고분자공학과) ;
  • 강호종 (단국대학교 고분자공학과)
  • Published : 2007.07.31

Abstract

The degradation characteristics of perfluoropolyether (PFPE) for computer hard disk drive have been investigated. Thermal degradation in PFPE started at $170\;^{\circ}C$ and it was completed at $450\;^{\circ}C$. If PFPE was contacted with wear fragment from slider made by $Al_2O_3{\cdot}TiC$, the thermal degradation was accelerated by the catalytic Lewis acid degradation. The Lewis acid degradation mainly took placed in methylene oride(fluoride) chain scission as well as methylene(fluoride) and hydroxy end chain. As a result, the degradation reaction accomplished as early as at $300\;^{\circ}C$. The photo oxidation due to UV exposure on PFPE caused the chain scission in methylene(fluoride), and end chain in PFPE without chain scission in methylene oxide(fluoride) and then the molecular weight of PFPE increased by expected secondary reactions between formed radicals in the photo oxidation.

컴퓨터 하드디스크 윤활제로 사용되고 있는 perfluoropolyether(PFPE)의 다양한 분해 거동을 살펴보았다. PFPE의 열분해는 $170\;^{\circ}C$에서 시작하여 $450\;^{\circ}C$에서 완전 분해가 일어나며 마모된 하드디스크 슬라이드의 재질인 $Al_2O_3{\cdot}TiC$가 윤활제와 접촉하는 경우, Lewis acid 촉매분해에 의하여 주사슬의 methylene oxide(fluoride)의 절단에 의한 급격한 분해반응과 methylene(fluoride)와 hydroxy 말단기의 열분해로 인하여 $300\;^{\circ}C$에서 분해가 완료됨을 확인하였다. PFPE에 UV가 조사되면 광 분해 영향으로 Lewis acid 촉매분해와는 달리 methylene oxide (fluoride)의 절단 보다는 methylene(fluoride)와 말단기의 절단이 더 촉진되며 이때 생성된 라디칼의 2차 반응에 의한 chain extension에 의하여 PFPE의 분자량이 증가됨을 확인하였다.

Keywords

References

  1. C. D. Mee and E. D. Daniel, Magnetic Recording Technology, Vol. 1, McGraw-Hill, 1987
  2. J. M. Harker, D. W. Brede, R. E. Pattison, G. R. Santana, and L. G. Tuft, IBM J. Res. Dev., 25, 667 (1981)
  3. F. E. Talke, Wear, 190, 232(1995)
  4. F. E. Talke, Wear Journal, 207, 118 (1997)
  5. J. J. M. Ruigrok, R. Coehoorn, S. R. Cumpson, and H. W. Kesteren, J. Appl. Phys., 87, 5398 (2000)
  6. H. Katayama, M. Hamamoto, J. Sato, Y. Murakami, and K. Kojima, IEEE Trans. Magn., 36, 195 (2000)
  7. M. Alex, A. Tselikov, and T. McDaniel, IEEE Trans. Magn., 37, 1244 (2001) https://doi.org/10.1109/TMAG.2001.966141
  8. J. J. M. Ruigrok, J. Mag. Soc. Jpn., 25, 313 (2001)
  9. J. F. Moulder, J. S. Hannond, and K. L. Smith, Appl. Surf. Sci., 25, 446 (1986)
  10. D. Sianesi, A. Pasetti, R. Fontanelli, G. C. Bernardi, and G. Caporiccio, Chim. Ind., 55, 208 (1973)
  11. W. H. Gumprecht, ASLE Trans., 9, 24 (1966)
  12. P. H. Kasai and P. Wheeler, Appl. Surf. Sci., 52, 91 (1991)
  13. P. H. Kasai, W. T. Tang, and P. Wheeler, Appl. Surf. Sci., 51, 201 (1991)
  14. D. D. Saperstein and L. J. Lin, Langmuir, 6, 1522 (1990)