DOI QR코드

DOI QR Code

Change in Microstructure and Mechanical Properties of Deoxidized Low-Phosphorous Copper Processed by Accumulative Roll-Bonding with Annealing

ARB가공된 인탈산동의 어닐링에 따른 미세조직 및 기계적 특성 변화

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Kim, Chun-Su (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Kim, Sang-Shik (Division of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Han, Seung-Zeon (Department of Materials Technology, Korea Institute of Machinery and Materials) ;
  • Lim, Cha-Yong (Department of Materials Technology, Korea Institute of Machinery and Materials)
  • 이성희 (목포대학교 신소재공학과) ;
  • 김춘수 (목포대학교 신소재공학과) ;
  • 김상식 (경상대학교 나노신소재공학부) ;
  • 한승전 (한국기계연구원 재료연구부) ;
  • 임차용 (한국기계연구원 재료연구부)
  • Published : 2007.07.27

Abstract

A deoxidized low-phosphorous copper processed by eight cycles of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $400^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $350^{\circ}C$, however above $400^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. The hardness of the copper decreased slightly with the annealing temperature up to $350^{\circ}C$, however they dropped largely above $400^{\circ}C$. Annealing characteristics of the copper were compared with those of an oxygen free copper processed by ARB and subsequently annealed.

Keywords

References

  1. R. Z. VaHey, N. A. Krasilnikov and N. K. Tsenev, Mater. Sci. Eng., A137, 35 (1991)
  2. R. Z. Abdulov, R. Z. Valiev and N. A. Krasilnilov, Mater. Sci. Lett., 9, 1445 (1990) https://doi.org/10.1007/BF00721611
  3. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong, Scripta Mater., 39, 1221 (1998) https://doi.org/10.1016/S1359-6462(98)00302-9
  4. N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa, Scripta Mater., 40, 795 (1999) https://doi.org/10.1016/S1359-6462(99)00015-9
  5. N. Tsuji, Y. Ito, Y. Saito and Y. Minamino, Scripta Mater., 47, 893 (2002) https://doi.org/10.1016/S1359-6462(02)00282-8
  6. S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya, Mater. Sci. Eng., A325, 228 (2002) https://doi.org/10.1016/S0921-5093(01)01416-2
  7. S. H. Lee, Y. Saito, K. T. Park and D. H. Shin, Mater. Trans., 43, 2320 (2002) https://doi.org/10.2320/matertrans.43.2320
  8. S. H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, T. Sakai, Mater. Trans., 44, 1376 (2003) https://doi.org/10.2320/matertrans.44.1376
  9. N. Tsuji, Y. Ito, H. Nakashima, F. Yoshida and Y. Minamino, Mater. Sci. Forum, 423, 396 (2002)
  10. S. H. Lee, J. Cho, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15(4), 240 (2005) https://doi.org/10.3740/MRSK.2005.15.4.240
  11. S. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 16(9), 592 (2006) https://doi.org/10.3740/MRSK.2006.16.9.592
  12. S. H. Lee, J. Cho, C. H. Lee, S. Z. Han and C. Y. Lim, Kor. J. Mater. Res., 15(9), 555 (2005) https://doi.org/10.3740/MRSK.2005.15.9.555

Cited by

  1. Fabrication of Ultrafine Grained Copper Alloy by 3-Layers Accumulative Roll-Bonding Process vol.443, pp.1662-9795, 2010, https://doi.org/10.4028/www.scientific.net/KEM.443.158