DOI QR코드

DOI QR Code

Electrical and optical properties of FTO transparent conducting oxide film by spray pyrolysis and its XPS analysis based on F/Sn ratio

분무열분해법에 의하여 제조한 FTO 투명전도막의 F/Sn 비율에 따른 전기, 광학적 특성과 XPS 분석

  • Published : 2007.07.27

Abstract

Fluorine-doped tin oxide (FTO) thin film was coated on aluminosilicate glass at $450^{\circ}C$ by spray pyrolysis method. In the range of 0-2.7 molar ratio of F/Sn, the variations of electrical conductivity and visible light transmission were investigated. At the F/Sn ratio of 1.765, the film showed the lowest electrical resistivity value of $3.0{\times}10^{-4}{\Omega}\;cm$, the highest carrier concentration of $2.404{\times}10^{21}/cm^3$, and about $8\;cm^2/V{\cdot}sec$ of electronic mobility. The FTO film showed a preferred orientation of (200) plane parallel to the substrate. X-ray photoelectron spectroscopy analysis results indicated that the contents of $Sn^{4+}-O$ bonding are the highest at 1.765 of F/Sn molar ratio.

Keywords

References

  1. S. M. Lee, Ceramist, 6(3), 56-66 (2003)
  2. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films, 102, 1-35 (1983) https://doi.org/10.1016/0040-6090(83)90256-0
  3. T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto, and N. Tanabe, J. Photochem. & Photobio. A: chemistry, 164, 199-202 (2004) https://doi.org/10.1016/j.jphotochem.2003.12.028
  4. R. G Gordon, MRS Bull. 25(16), 52-57 (2000)
  5. New Transparent Oxide (in Japanese), Shinmeikosya, pp. 73-75 2005
  6. S. Shanthi, H. Anuratha, C. Subramanian, and P. Ramasamy, J. Cryst. Growth, 194(3-4), 369-373 (1998) https://doi.org/10.1016/S0022-0248(98)00786-6
  7. A. I. Martinez and D. R. Acosta, Thin Solid Films 483, 107-113 (2005) https://doi.org/10.1016/j.tsf.2004.12.047
  8. K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, and M. Murozono. J. of the Electrochem. Soc., 146(6),2113-2116 (1999) https://doi.org/10.1149/1.1391900
  9. A. V. Moholkar, S. M. Pawar, K. Y. Rajpure, and C. H. Bhosale, Mat. Lett. 61, 3030-3036 (2007) https://doi.org/10.1016/j.matlet.2006.10.077
  10. A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, J. Appl. Phys. 83(2), 1049-1057 (1998) https://doi.org/10.1063/1.366796
  11. E. Elangovan, K. Ramamurthi, App. Surf. Sci., 249, 183196 (2005) https://doi.org/10.1016/j.apsusc.2004.11.074
  12. Japan Society for the Promotion of Science, Transperent Oxide optical & electrical materials 166th committe, Technology of Transparent Conducting Oxide (in Japanese), Ohmsha, p. 54-57, (1999)
  13. S. H. Brewer and S. Franzen, J. Alloys and Comp. 338, 73-79 (2002) https://doi.org/10.1016/S0925-8388(02)00217-7
  14. P. Veluchamy, M. Tsuji, T. Nishio, T. Aramoto, H. Higuchi, S. Kumazawa, S. Shibutani, J. Nakajima, T. Arita, H. Ohyama, A. Hanafusa, T. Hibino, and K. Omura, Solar Energy Mat.& Solar Cells, 67, 179-185 (2001) https://doi.org/10.1016/S0927-0248(00)00279-8
  15. A. Smith, J. Laurent, D. S. Smith, J. P. Bonnet, and R. R. Clenente, Thin Solid Films 266, 20-30 (1995) https://doi.org/10.1016/0040-6090(95)06648-9
  16. D. R. Acosta, E. P. Zironi, E. Montoya, and W. Estrada, Thin Solid Films, 288, 1-7, (1996) https://doi.org/10.1016/S0040-6090(96)08815-3
  17. B. Thangaraju, Thin Solid Films 402, 71-78 (2002) https://doi.org/10.1016/S0040-6090(01)01667-4
  18. T. Y. Lim, C.Y. Kim, K. B. Shim and K. H. Auh, J. Kor. Cryst. Growth & Cryst. Tech., 13(5), 254-259 (2003)
  19. A. I. Martinez, L. Huerta, J. M. O-Rueda de Leon, D. Acosta, O. Malik and Aguilar, J. Phys. D:Appl. Phys. 39, 5019-5096 (2006)