Finite Element Analysis with Paraxial Boundary Condition

파진행 문제를 위한 Paraxial 경계조건의 유한요소해석

  • Published : 2007.06.30

Abstract

For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first and second order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations. We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer's boundary conditions.

무한영역에서 진행하는 탄성파를 유한영역에서 수치적으로 해석하기 위해 많은 흡수경계조건들이 제안되어져 왔다. Paraxial 경계조건은 흡수경계조건의 하나로서 스칼라 및 탄성파 방정식의 paraxial 근사화를 통해 얻어지며, 그 성능이 우수하고 수치해석시 계산적 부담을 주지 않는다. 그러나 경계조건이 복잡한 편미분 방정식으로 표현되어 있어 유한요소해석으로의 적용이 어렵다. 본 논문에서는 penalty function method를 이용하여 전체 에너지 범함수와 paraxial 경계조건을 함께 변분정식화 함으로써 유한요소해석을 수행하였다. 유한요소해석에 가장 적용이 용이하며, 많이 사용되어지는 Lysmer-Kuhlemeyer의 흡수경계조건과 성능을 비교함으로써 연구결과의 타당성을 입증하였다.

Keywords

References

  1. 이종세, 손윤기(1998) 표면파 산란거동의 유한요소 해석, 한국전산구조공학회 학술발표회 논문집, 11(1). pp.383-389
  2. Basu, U., Chopra, A.K. (2004) Perfectly Matched Layers for Transient Elastodynamics of Unbounded Domains. International Journal for Numerical Methods in Engineering, 59, pp.1039-1074
  3. Clayton, R., Engquist, B.(1977) Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations, Bulletin of the Seismological Society of America, 67(6), pp.1529-1540
  4. Cohen, M., Jennings, P.C.(1983) Silent Boundary Methods for Transient Analysis, Computational Methods for Transient Analysis, Edited by T. Belytschko and T.J.R. Hughes, Elsevier, pp.301-360
  5. Engquist, B., Majda, A.(1977) Absorbing Boundary Conditions for the Numerical Simulation of Waves, Mathematics of Computation, 31(139), pp.629-651 https://doi.org/10.2307/2005997
  6. Estorff, O.V. (1991) Dynamic Response of Elastic Blocks by Time Domain BEM and FEM, Computers & Structures, 38(3), pp.289-300 https://doi.org/10.1016/0045-7949(91)90107-W
  7. Givoli, D.(1992) Numerical Methods for Problems in Infinite Domains, Elsevier Scientific, Amsterdam, p.300
  8. Higdon, R. L. (1992) Absorbing Boundary Conditions for Acoustic and Elastic Waves in Stratified Media, Journal of Computational Physics, 101, pp.386-418 https://doi.org/10.1016/0021-9991(92)90016-R
  9. Hu, F.Q.(1996) On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer, Journal of Computational Physics, 129, pp.201-219 https://doi.org/10.1006/jcph.1996.0244
  10. Karabalis, D.L., Beskos, D.E.(1985) Dynamic Response of 3-D Flexible Foundations by Time Domain BEM and FEM, Soil Dynamics & Earthquake Engineering, 4, pp.91-101 https://doi.org/10.1016/0261-7277(85)90004-X
  11. Kellezi, L.(2000) Local Transmitting Boundaries for Transient Elastic Analysis, Soil Dynamics & Earthquake Engineering, 19(7), pp.533-547 https://doi.org/10.1016/S0267-7261(00)00029-4
  12. Kim, D.K., Yun, J.B.(2000) Time-Domain Soil-Structure Interaction Analysis in Two-Dimensional Medium Based on Analytical Frequency-Dependent Infinite Elements, International Journal for Numerical Methods in Engineering, 47, pp.1241-1261 https://doi.org/10.1002/(SICI)1097-0207(20000310)47:7<1241::AID-NME807>3.0.CO;2-9
  13. Komatitsch, D., Tromp, J.(2003) A Perfectly Matched Layer Absorbing Boundary Condition for the Second Order Seismic Wave Equation, Geophysical Journal International, 154, pp.146-153 https://doi.org/10.1046/j.1365-246X.2003.01950.x
  14. Krenk, S. (2002) Unified Formulation of Radiation Conditions for the Wave Equation, International Journal for Numerical Methods in Engineering, 53, pp.275-295 https://doi.org/10.1002/nme.268
  15. Liao, Z.P., Wong, H.L.(1984) A Transmitting Boundary for the Numerical Simulation of Elastic Wave Propagation, International Journal of Soil Dynamics & Earthquake Engineering, 3(4), pp.174-183 https://doi.org/10.1016/0261-7277(84)90033-0
  16. Lindman, E.L.(1975) Free-Space Boundary Conditions for the Time Dependent Wave Equation, Journal of Computational Physics, 18, pp.66-78 https://doi.org/10.1016/0021-9991(75)90102-3
  17. Lysmer, J., Kuhlemeyer, P.L.(1969) Finite Dynamic Model for Infinite Media, Journal of the Engineering Mechanics Division, ASCE, 95, EM4, pp.859-877
  18. Smith, W.D.(1974) A Nonreflecting Plane Boundary for Wave Propagation Problems, Journal of Computational Physics, 15, pp.492-503 https://doi.org/10.1016/0021-9991(74)90075-8
  19. Woods, R. D. (1968) Screening of Surface Waves in Soils, Journal of the Soil Mechanics & Foundations Division, ASCE, 94, pp.951-979
  20. Yerli, H.R., Ternel, B., Kiral. E.(1998) Transient Infinite Elements for 2D Soil-Structure Interaction Analysis, Journal of Geotechnical & Geoenvironmental Engineering, 124(10), pp.976-988 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:10(976)