DOI QR코드

DOI QR Code

Microstructural Evolution and Ultrasonic Nondestructive Evaluation During Creep-Fatigue of 9Cr Ferritic Heat-Resisting Steel

페라이트기 9Cr 내열강의 크리프-피로손상에 따른 미세조직 및 초음파 비파괴평가

  • Kim, Chung-Seok (Division of Materials Science and Engineering, Korea University) ;
  • Kwun, S.I. (Division of Materials Science and Engineering, Korea University) ;
  • Park, Ik-Keun (Department of Mechanical Engineering, Seoul National University of Technology)
  • Published : 2007.08.27

Abstract

The microstructural evolution of ferritic 9Cr-1Mo-V-Nb steel, subjected to creep-fatigue at $550^{\circ}C$, was evaluated nondestructively by measuring the ultrasonic velocity. The variation of the ultrasonic velocity with the fatigue life fraction exhibited three regions. In the first region ($N/N_f$<0.2), a significant increase in the velocity was observed, followed by a slight increase between the fatigue life fractions of $0.2N_f$ and $0.8N_f$, and then a decrease in the final region. The change of the ultrasonic velocity during creep-fatigue was interpreted in relation to the microstructural properties. This study proposes an ultrasonic nondestructive evaluation method of quantifying the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.

Keywords

References

  1. F. Abe, Curr. Opin. Solid State Mater. Sci., 8, 305 (2004) https://doi.org/10.1016/j.cossms.2004.12.001
  2. Peter J. Szabo, Mater. Sci. Eng., A387-389, 710 (2004) https://doi.org/10.1016/j.msea.2004.01.091
  3. M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi and K. Kanazawa, Int. J. Fatigue, 28, 300 (2006) https://doi.org/10.1016/j.ijfatigue.2005.04.013
  4. P. J. Ennis, A. Zielinska-Lipiec, O. Wachter and A. Czyrska-Filemonowicz, Acta Mater., 45, 4901 (1997) https://doi.org/10.1016/S1359-6454(97)00176-6
  5. F. Abe, T. Horiuch, M. Taneike and K. Sawada, Mater. Sci. Eng., A378, 299 (2004) https://doi.org/10.1016/j.msea.2003.11.073
  6. G. Eggeler, J. C. Earthman, N. Nilsbang and B. Ilschner, Acta Metal., 37, 49 (1989) https://doi.org/10.1016/0001-6160(89)90265-4
  7. S. Luxenburger and W. Arnold, Ultrasonics, 40, 797 (2002) https://doi.org/10.1016/S0041-624X(02)00212-3
  8. G. Dobmann, M. Kroning, W. Theiner, H. Willems and U. Fiedler, Nucl. Eng. Design, 157, 137 (1995) https://doi.org/10.1016/0029-5493(95)00992-L
  9. S. Gupta, A. Ray and E. Keller, Inter. J. Fatigue, 29, 1100 (2007) https://doi.org/10.1016/j.ijfatigue.2006.09.011
  10. J. W. Byeon, C. S. Kim and S. I. Kwun, Phys. Stat. Sol(b), 241, 1756 (2004) https://doi.org/10.1002/pssb.200304571
  11. P. Mclntire, Nondestructive Testing Handbook, 2nd ed., Vol.7, ASNT, (1999)
  12. D. Baray and R. Stanley, Nondestructive Evaluation-A tool for design, manufacturing and service, McGraw-Hill, New York, (1989)
  13. N. S. Cheruvu, Metall. Trans., 20, 87 (1989)
  14. C. S. Kim, Ph. D. thesis, Korea University, Korea, (2007)
  15. G. K. Williamson and W. H. Hall, Acta Metall., 1, 22 (1953) https://doi.org/10.1016/0001-6160(53)90006-6
  16. F. Abe, Mater. Sci. Eng., A387-389, 565 (2004) https://doi.org/10.1016/j.msea.2004.01.057
  17. K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae and R. Komine, Mater. Sci. Eng., A267, 19 (1999) https://doi.org/10.1016/S0921-5093(99)00066-0
  18. G. Eggeler, Acta Metall., 37, 3225 (1989) https://doi.org/10.1016/0001-6160(89)90194-6
  19. M. Taneike, F. Abe and K. Sawada, Nature, 424, 294 (2003) https://doi.org/10.1038/nature01740
  20. M. Hattestrand, M. Schwind and H. O. Andren, Mater. Sci. Eng., A250, 27 (1998) https://doi.org/10.1016/S0921-5093(98)00532-2
  21. K. Goebbels, Materials characterization for process control and product conformity, p.12, CRC press, Florida (1994)
  22. J. E. Lee, Y. C. Kim, J. P. Ahn and H. S. Kim, Acta Mater., 53, 129 (2005) https://doi.org/10.1016/j.actamat.2004.09.010
  23. M. Vasudevan, P. Palanichamy and S. Venkadesan, Scripta Metall. Mater., 30, 1479 (1994) https://doi.org/10.1016/0956-716X(94)90249-6
  24. P. Palanichamy, M. Vasudevan, T. Jayakumar, S. Venugopal and B. Raj, NDT & E international, 33, 253 (2000) https://doi.org/10.1016/S0963-8695(99)00047-X
  25. T. Morishita and M. Hirao, Int. Solids Structures, 34, 1169 (1997) https://doi.org/10.1016/S0020-7683(96)00110-2
  26. A. Granato and K. LUcke, J., Appl. Phys., 27, 583 (1956) https://doi.org/10.1063/1.1722436
  27. H. Jeong and D. H. Kim, Mater. Sci. Eng., A337, 82 (2002) https://doi.org/10.1016/S0921-5093(02)00016-3

Cited by

  1. Detection and genetic analysis of porcine hemagglutinating encephalomyelitis virus in South Korea vol.42, pp.1, 2011, https://doi.org/10.1007/s11262-010-0551-y