DOI QR코드

DOI QR Code

Sensitivity Enhancement of Polyaniline Sensor to Volatile Organic Compounds

휘발성유기화합물가스에 대한 폴리아닐린 센서의 감도 향상

  • Yu, Joon-Boo (Department of Materials science and metallurgy, Kyungpook National University) ;
  • Liu, Fei (Department of Materials science and metallurgy, Kyungpook National University) ;
  • Lim, Jeong-Ok (Department of Medical and Biological Engineering, Kyungpook National University) ;
  • Byun, Hyung-Gi (Department of Information and Communication Engineering, Kangwon National University) ;
  • Huh, Jeung-Soo (Department of Materials science and metallurgy, Kyungpook National University)
  • 유준부 (경북대학교 금속신소재공학과) ;
  • 유비 (경북대학교 금속신소재공학과) ;
  • 임정옥 (경북대학교 의용생체공학과) ;
  • 변형기 (강원대학교 정보통신공학과) ;
  • 허증수 (경북대학교 금속신소재공학과)
  • Published : 2007.08.27

Abstract

Nano-structured polyaniline have been synthesized by interfacial polymerization method at room temperature. An aqueous solution of aniline in chloroform and another solution of ammonium peroxydisulfate in doping acid were prepared at different times terminated with methanol at room temperature. SEM, UV-vis were used to characterize the polyaniline with regard to their morphology and structure. The diameter and length of polyaniline can be controlled by the reaction time. Nano-structured polyaniline were found to have superior sensitivity for volatile organic compounds(VOCs). As the reaction time to increase from 30minute to 2hours the sensitivity were decreased to VOCs vapors. The sensitivity of Nano-structured polyaniline sensor appeared to VOCs better than the sensitivity of chemical synthesis sensors. The sensitivity of Nano-structured polyaniline sensor improved benzene vapors.

Keywords

References

  1. H. Bai, G Shi, Sensors, 7, 267 (2007) https://doi.org/10.3390/s7030267
  2. G. Harsanyi, Sensor Review, 20(2), 98-105 (2000) https://doi.org/10.1108/02602280010319169
  3. J. Huang, R. Kaner, Chern, Comm., 367 (2006) https://doi.org/10.1039/b510956f
  4. X. Zhang, R. Chanyuking, A. Jose, S, K. Manohar, Synthetic Metals, 145, 23 (2004) https://doi.org/10.1016/j.synthmet.2004.03.012
  5. A. Wu, H. Kolla, S. K. Manohar, Macromolecules, 38(19) 7873 (2005) https://doi.org/10.1021/ma051299e
  6. V. Bajpai, P. He, L. Goettler, J. H. Dong, L. Dai, Synthetic metals, 156, 466 (2006) https://doi.org/10.1016/j.synthmet.2006.01.008
  7. J. Huang, Pure Appl. Chern., 78(1), 15 (2006) https://doi.org/10.1351/pac200678010015
  8. J. Stejskal, R.G Gilbert, Pure Appl. Chern. 74, 857 (2002) https://doi.org/10.1351/pac200274050857
  9. A. G MacDirmid, Synthetic Metals, 84, 27 (1997) https://doi.org/10.1016/S0379-6779(97)80658-3
  10. H. R. Hwang, J. G Roh, D.D. Lee, J. O. Lim, J.S. Huh, Metals and Materials International, 9(3), 287 (2003) https://doi.org/10.1007/BF03027048
  11. H. K. Jun, Y. S. Hoh, B. S. Lee, S. T. Lee, J. O Lim, D. D. Lee, J. S. Huh, Sensors and Actuators B 96, 576 (2003) https://doi.org/10.1016/j.snb.2003.06.002
  12. J. S. Kim, S. O. Sohn, J. S. Huh, Sensors and Actuators B 108, 409 (2005) https://doi.org/10.1016/j.snb.2004.11.072
  13. C. I. Simionescu, I. Cianga, M. Ivanoiu, A. Airinei, M. Grigoras, I. Radu, European Polymer Journal 35, 1895, (1999) https://doi.org/10.1016/S0014-3057(98)00272-9