Biosynthesis, Modification, and Biodegradation of Bacterial Medium-Chain-Length Polyhydroxyalkanoates

  • Kim, Do-Young (Department of Microbiology, Chungnam National University) ;
  • Kim, Hyung-Woo (Department of Microbiology, Chungnam National University) ;
  • Chung, Moon-Gyu (Department of Microbiology, Chungnam National University) ;
  • Rhee, Young-Ha (Department of Microbiology, Chungnam National University)
  • Published : 2007.04.30

Abstract

Medium-chain-length polyhydroxyalkanoates (MCL-PHAs), which have constituents with a typical chain length of $C_{6}-C_{14}$, are polyesters that are synthesized and accumulated in a wide variety of Gram-negative bacteria, mainly pseudomonads. These biopolyesters are promising materials for various applications because they have useful mechanical properties and are biodegradable and biocompatible. The versatile metabolic capacity of some Pseudomonas spp. enables them to synthesize MCL-PHAs that contain various functional substituents; these MCL-PHAs are of great interest because these functional groups can improve the physical properties of the polymers, allowing the creation of tailor-made products. Moreover, some functional substituents can be modified by chemical reactions to obtain more useful groups that can extend the potential applications of MCL-PHAs as environmentally friendly polymers and functional biomaterials for use in biomedical fields. Although MCL-PHAs are water-insoluble, hydrophobic polymers, they can be degraded by microorganisms that produce extracellular MCL-PHA depolymerase. MCL-PHA-degraders are relatively uncommon in natural environments and, to date, only a limited number of MCL-PHA depolymerases have been investigated at the molecular level. All known MCL-PHA depolymerases share a highly significant similarity in amino acid sequences, as well as several enzymatic characteristics. This paper reviews recent advances in our knowledge of MCL-PHAs, with particular emphasis on the findings by our research group.

Keywords

References

  1. Abraham, G.A., A. Gallardo, J.S. Roman, E.R. Olivera, R. Jodra, B. Garcia, B. Minambres, J.L. Garcia, and J.M. Luengo. 2001. Microbial synthesis of poly($\beta$-hydroxyalkanoates) bearing phenyl groups from Pseudomonas putida: chemical structure and characterization. Biomacromolecules 2, 562-567 https://doi.org/10.1021/bm010018h
  2. Arkin, A.H., B. Hazer, and M. Borcakli. 2000. Chlorination of poly (3-hydroxyalkanoates) containing unsaturated side chains. Macromolecules 33, 3219-3223 https://doi.org/10.1021/ma991535j
  3. Arostegui, S.M., M.A. Aponte, E. Diaz, and E. Schroder. 1999. Bacterial polyesters produced by Pseudomonas oleovorans containing nitrophenyl groups. Macromolecules 32, 2889-2895 https://doi.org/10.1021/ma981482q
  4. Ashby, R.D., A.M. Cromwick, and T.A. Foglia. 1998. Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow. Int. J. Biol. Macromol. 23, 61-72 https://doi.org/10.1016/S0141-8130(98)00034-8
  5. Ashby, R.D., T.A. Foglia, D.K.Y. Solaiman, C.K. Liu, A. Nunez, and G. Eggink. 2000. Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int. J. Biol. Macromol. 27, 355-361 https://doi.org/10.1016/S0141-8130(00)00140-9
  6. Bear, M.M., E. Renard, S. Randriamahefa, V. Langlois, and Ph. Guerin. 2001. Preparation of a bacterial polyester with carboxy groups in the side chains. Macromol. Chem. 4, 289-293 https://doi.org/10.1002/macp.1950.020040307
  7. Bear, M.M., M.A. Leboucher-Durand, V. Langlois, R.W. Lenz, S. Goodwin, and Ph. Guerin. 1997. Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React. Funct. Polym. 34, 65-77 https://doi.org/10.1016/S1381-5148(97)00024-2
  8. Chen, J.Y., G. Song, and G.Q. Chen. 2006. A lower specificity of PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and mediumchain- length 3-hydroxyalkanoates. Antonie van Leeuwenhoek 89, 157-167 https://doi.org/10.1007/s10482-005-9019-9
  9. Chen, J.Y., T. Liu, Z. Zheng, J.C. Chen, and G.Q. Chen. 2004. Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol. Lett. 234, 231-237 https://doi.org/10.1111/j.1574-6968.2004.tb09538.x
  10. Chung, C.W. 2005. Characterization of chemically modified bacterial medium-chain-length poly(3-hydroxyalkanoates) for biomedical applications. Ph. D. thesis, Chungnam National University, Korea
  11. Chung, C.W., H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2003. Poly (ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int. J. Biol. Macromol. 32, 17-22 https://doi.org/10.1016/S0141-8130(03)00020-5
  12. Curley, J.M., B. Hazer, R.W. Lenz, and R.C. Fuller. 1996. Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29, 1762-1766 https://doi.org/10.1021/ma951185a
  13. Deng, Y., K. Zhao, X.F. Zhang, P. Hu, and J.C. Chen. 2002. Study on the three-dimensional proliferation of rabbit articular cartilage- derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23, 4049-4056 https://doi.org/10.1016/S0142-9612(02)00136-9
  14. Doi, Y. and C. Abe. 1990. Biosynthesis and characterization of a new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy- $\omega$-chloroalkanoates. Macromolecules 23, 3705-3707 https://doi.org/10.1021/ma00217a027
  15. Doi, Y., S. Kitamura, and H. Abe. 1995. Microbial synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822-4828 https://doi.org/10.1021/ma00118a007
  16. Dufresne, A., L. Reche, R.H. Marchessault, and M. Lacroix. 2001. Gamma-ray crosslinking of poly(3-hydroxyoctanoate-co-undecenoate). Int. J. Biol. Macromol. 29, 73-82 https://doi.org/10.1016/S0141-8130(01)00152-0
  17. Elbanna, K., T. Lutke-Eversloh, D. Jendrossek, H. Luftmann, and A. Steinbuchel. 2004. Studies on the biodegradability of polythiester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch. Microbiol. 182, 212-225
  18. Eroglu, M.S., B. Hazer, T. Ozturk, and T. Caykara. 2005. Hydroxylation of pendant vinyl groups of poly(3-hydroxy undecenoate) in high yield. J. Appl. Polym. Sci. 97, 2132-2139 https://doi.org/10.1002/app.21943
  19. Eroglu, M.S., T. Caykara, and B. Hazer. 1998. Gamma rays induced grafting of methyl methacrylate onto poly($\beta$ -hydroxynonanoate). Polym. Bull. 41, 53-60 https://doi.org/10.1007/s002890050332
  20. Ewering, C., T. Lutke-Eversloh, H. Luftmann, and A. Steinbuchel. 2002. Identification of novel sulfur-containing bacterial polyesters: biosynthesis of poly(3-hydroxy-S-propyl-$\omega$-thioalkanoates) containing thioester linkages in the side chains. Microbiology 148, 1397-1406 https://doi.org/10.1099/00221287-148-5-1397
  21. Fiedler, S., A. Steinbuchel, and B. H. Rehm. 2002. The role of the fatty acid $\beta$ -oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch. Microbiol. 178, 149-160 https://doi.org/10.1007/s00203-002-0444-0
  22. Fritzsche, K., R.W. Lenz, and R.C. Fuller. 1990a. Production of unsaturated polyesters by Pseudomonas oleovorans. Int. J. Biol. Macromol. 12, 85-91 https://doi.org/10.1016/0141-8130(90)90058-I
  23. Fritzsche, K., R.W. Lenz, and R.C. Fuller. 1990b. An unusual bacterial polyester with a phenyl pendant group. Macromol. Chem. 191, 1957-1965 https://doi.org/10.1002/macp.1990.021910821
  24. Fukui, T., S. Yokomizo, G. Kobayashi, and Y. Doi. 1999. Co-expression of polyhydroxyalkanoate synthase and (R)-enoyl-CoA hydratase genes of Aeromonas caviae establishes copolyester biosynthesis pathway in Escherichia coli. FEMS Microbiol. Lett. 170, 69-75 https://doi.org/10.1111/j.1574-6968.1999.tb13356.x
  25. Gagnon, K.D., R.W. Lenz, R.J. Farris, and R.C. Fuller. 1994. Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35, 4358-4367 https://doi.org/10.1016/0032-3861(94)90093-0
  26. Hazer, B. 1996. Poly($\beta$ -hydroxynonanoate) and polystyrene or poly (methylmethacrylate) graft copolymers: microstructure characteristics and mechanical and thermal behavior. Macromol. Chem. Phys. 197, 431-441 https://doi.org/10.1002/macp.1996.021970202
  27. Hazer, B. and A. Steinbuchel. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74, 1-12 https://doi.org/10.1007/s00253-006-0732-8
  28. Hazer, B., S.I. Demirel, M. Borcakli, M.S. Eroglu, M. Cakmak, and B. Erman. 2001. Free radical crosslinking of unsaturated bacterial polyester obtained from soybean oily acids. Polym. Bull. 46, 389-394 https://doi.org/10.1007/s002890170047
  29. He, W., W. Tian, G. Zhang, G.-Q. Chen, and Z. Zhang. 1998. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol. Lett. 169, 45-49 https://doi.org/10.1111/j.1574-6968.1998.tb13297.x
  30. Hein, H., J.R.J. Paletta, and A. Steinbuchel. 2002 Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases PhaC1 and PhaC2. Appl. Microbiol. Biotechnol. 58, 229-236 https://doi.org/10.1007/s00253-001-0863-x
  31. Hoffmann, N., A. Steinbuchel, and B.H.A. Rhem. 2000. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol. Lett. 184, 253-259윁 https://doi.org/10.1111/j.1574-6968.2000.tb09023.x
  32. Huijberts, G.N.M., G. Eggink, P. de Waard, G.W. Huisman, and B. Witholt. 1992. Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl. Environ. Microbiol. 58, 536-544
  33. Ilter, S., B. Hazer, A.H. Arkin, and R.W. Lenz. 2001. Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol. Chem. Phys. 202, 2281-2286 https://doi.org/10.1002/1521-3935(20010701)202:11<2281::AID-MACP2281>3.0.CO;2-9
  34. Imamura, T., T. Kenmoku, T. Honma, S. Kobayashi, and T. Yano. 2001. Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int. J. Biol. Macromol. 29, 295-301 https://doi.org/10.1016/S0141-8130(01)00179-9
  35. Jaeger, K.E., S. Ransac, B.W. Dijkstra, D. Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15, 29-63 https://doi.org/10.1111/j.1574-6976.1994.tb00121.x
  36. Jang, J.Y., D. Kim, H.W. Bae, K.Y. Choi, J.C. Chae, G.J. Zylstra, Y.M. Kim, and E. Kim. 2005. Isolation and characterization of a Rhodococcus species strain able to grow on ortho- and para-xylene. J. Microbiol. 43, 325-330
  37. Jendrossek, D. 2001. Microbial degradation of polyesters. Adv. Biochem. Eng. Biotechnol. 71, 293-325 https://doi.org/10.1007/3-540-40021-4_10
  38. Jung, K., R. Hany, D. Rentsch, T. Storni, T. Egli, and B. Witholt. 2000. Characterization of new bacterial copolyesters containing 3-hydroxyoxoalkanoates and acetoxy-3-hydroxyalkanoates. Macromolecules 33, 8571-8575 https://doi.org/10.1021/ma000829y
  39. Kang, H.O., C.W. Chung, H.W. Kim, Y.B. Kim, and Y.H. Rhee. 2001. Cometabolic production of copolyesters consisting of 3- hydroxyvalerate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. DSY-82. Antonie van Leeuwenhoek 80, 185-191 https://doi.org/10.1023/A:1012214029825
  40. Kim, D.Y., H.C. Kim, S.Y. Kim, and Y.H. Rhee. 2005a. Molecular characterization of extracellular medium-chain-length poly(3- hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains. J. Microbiol. 43, 285-294
  41. Kim, D.Y., J.S. Nam, and Y.H. Rhee. 2002b. Characterization of an extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase from Pseudomonas alcaligenes LB19. Biomacromolecules 3, 291-296 https://doi.org/10.1021/bm010113q
  42. Kim, D.Y., J.S. Nam, Y.H. Rhee, and Y.B. Kim. 2003a. Biosynthesis of novel poly(3-hydroxyalkanoates) containing alkoxy groups by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 13, 632-635
  43. Kim, D.Y., S.B. Jung, G.G. Choi, Y.B. Kim, and Y.H. Rhee. 2001a. Biosynthesis of polyhydroxyalkanoate copolyester containing cyclohexyl groups by Pseudomonas oleovorans. Int. J. Biol. Macromol. 29, 145-150 https://doi.org/10.1016/S0141-8130(01)00144-1
  44. Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 1998. Bacterial poly(3-hydroxyalkanoates) bearing carbon-carbon triple bonds. Macromolecules 31, 4760-4763 https://doi.org/10.1021/ma980208t
  45. Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2000a. Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int. J. Biol. Macromol. 28, 23-29 https://doi.org/10.1016/S0141-8130(00)00150-1
  46. Kim, D.Y., Y.B. Kim, and Y.H. Rhee. 2002a. Cometabolic production of poly(3-hydroxyalkanoates) containing carbon-carbon double and triple bonds by Pseudomonas oleovorans. J. Microbiol. Biotechnol. 12, 518-521
  47. Kim, D.Y. and Y.H. Rhee. 2003. Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol. 61, 300-308 https://doi.org/10.1007/s00253-002-1205-3
  48. Kim, H., H.S. Ju, and J. Kim. 2000b. Characterization of an extracellular poly(3-hydroxy-5-phenylvalerate) depolymerase from Xanthomonas sp. JS02. Appl. Microbiol. Biotechnol. 53, 323-327 https://doi.org/10.1007/s002530050028
  49. Kim, H.J., D.Y. Kim, J.S. Nam, K.S. Bae, and Y.H. Rhee. 2003b. Characterization of an extracellular medium-chain-length poly (3-hydroxyalkanoate) depolymerase from Streptomyces sp. KJ-72. Antonie van Leeuwenhoek 83, 183-1895 https://doi.org/10.1023/A:1023395527073
  50. Kim, H.M., K.E. Ryu, K.S. Bae, and Y.H. Rhee. 2000c. Purification and characterization of extracellular medium-chainlength polyhydroxyalkanoate depolymerase from Pseudomonas sp. RY-1. J. Biosci. Bioeng. 89, 196-198 https://doi.org/10.1016/S1389-1723(00)88737-X
  51. Kim, H.W., C.W. Chung, S.S. Kim, Y.B. Kim, and Y.H. Rhee. 2002c. Preparation and cell compatibility of acryamide-grafted poly(3- hydroxyoctanoate). Int. J. Biol. Macromol. 30, 129-135 https://doi.org/10.1016/S0141-8130(02)00012-0
  52. Kim, H.W., C.W. Chung, Y.B. Kim, and Y.H. Rhee. 2005c. Preparation and hydrolytic degradation of semi-interpenetrating networks of poly(3-hydroxyundecenoate) and poly(lactide-coglycolide). Int. J. Biol. Macromol. 37, 221-226 https://doi.org/10.1016/j.ijbiomac.2005.11.002
  53. Kim, H.W., C.W. Chung, and Y.H. Rhee. 2005b. UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly (3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int. J. Biol. Macromol. 35, 47-538 https://doi.org/10.1016/j.ijbiomac.2004.11.007
  54. Kim, O.Y., R.A. Gross, and D.R. Rutherford. 1995a. Bioengineering of poly($\beta$-hydroxyalkanoates) for advanced material applications: incorporation of cyano and nitrophenoxy side chain substituents. Can. J. Microbiol. 41(Suppl. 1), 32-43 https://doi.org/10.1139/m95-165
  55. Kim, O.Y., R.A. Gross, W.J. Hammer, and R.A. Newmark. 1996a. Microbial synthesis of poly($\beta$-hydroxyalkanoates) containing fluorinated side-chain substituents. Macromolecules 29, 4572- 4581 https://doi.org/10.1021/ma960059j
  56. Kim, S.N., S.C. Shim, D.Y. Kim, Y.H. Rhee, and Y.B. Kim. 2001b. Photochemical crosslinking and enzymatic degradation of poly (3-hydroxyalkanoate)s for micropatterning in photolithography. Macromol. Rapid Commun. 22, 1066-1071 https://doi.org/10.1002/1521-3927(20010901)22:13<1066::AID-MARC1066>3.0.CO;2-M
  57. Kim, Y.B., D.Y. Kim, and Y.H. Rhee. 1999. PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32, 6058-6064 https://doi.org/10.1021/ma982033t
  58. Kim, Y.B. and R.W. Lenz. 2001. Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 51-79 https://doi.org/10.1007/3-540-40021-4_2
  59. Kim, Y.B., R.W. Lenz, and R.C. Fuller. 1992. Poly($\beta$ -hydroxyalkanoates) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25, 1852-1857 https://doi.org/10.1021/ma00033a002
  60. Kim, Y.B., Y.H. Rhee, S.H. Han, G.S. Heo, and J.S. Kim. 1996b. Poly-3-hydroxyalkanoates produced from Pseudomonas oleovorans grown with $\omega$-phenoxyalkanoates. Macromolecules 29, 3432-3435 https://doi.org/10.1021/ma951537d
  61. Klingbeil, B., R.M. Kroppenstedt, and D. Jendrossek. 1996. Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene. FEMS Microbiol. Lett. 142, 215-221 https://doi.org/10.1111/j.1574-6968.1996.tb08433.x
  62. Lee, M.Y., W.H. Park, and R.W. Lenz. 2000. Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41, 1703-1709 https://doi.org/10.1016/S0032-3861(99)00347-X
  63. Lenz, R.W., Y.B. Kim, and R.C. Fuller. 1992. Production of unusual bacterial polyesters by Pseudomonas oleovorans through cometabolism. FEMS Microbiol. Rev. 103, 207-214 https://doi.org/10.1111/j.1574-6968.1992.tb05839.x
  64. Lim, J.H. 2006. Expression, purification and characterization of Rhodococcus equi P2 MCL-PHA depolymerase in Escherichia coli. MS thesis, Chungnam National University, Korea
  65. Mallarde, D., M. Valiere, C. David, M. Menet, and Ph. Guerin. 1998. Hydrolytic degradability of poly(3-hydroxyoctanoate) and of a poly(3-hydroxyoctanoate)/poly(R,S-lactic acid) blend. Polymer 15, 3387-33921
  66. Mergaert, J. and J. Swings. 1996. Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J. Ind. Microbiol. 17, 463-469 https://doi.org/10.1007/BF01574777
  67. Nam, J.S., H.C. Kim, D.Y. Kim, and Y.H. Rhee. 2002. Distribution and diversity of microbial communities relating to biodegradation of medium-chain-length poly(3-hydroxyalkanoates) in soils. In Proceedings of 9th International Symposium on the Genetics of Industrial Microorganisms. Gyeongju, Korea. p192
  68. Nishida, H. and Y. Tokiwa. 1993. Distribution of poly($\beta$ -hydroxybutyrate) and poly($\epsilon$-caprolactone) aerobic degrading microorganisms in different environments. J. Environ. Polym. Degrad. 1, 227-233 https://doi.org/10.1007/BF01458031
  69. Park, I.J., Y.H. Rhee, N.Y. Cho, and K.S. Shin. 2006. Cloning and analysis of medium-chain-length poly(3-hydroxyalkanoate) depolymerase gene of Pseudomonas luteola M13-4. J. Microbiol. Biotechnol. 16, 1935-1939
  70. Park, W.H., R.W. Lenz, and S. Goodwin. 1998. Epoxidation of bacterial polyesters with unsaturated side chains. II. Rate of epoxidation and polymer properties. J. Polym. Sci. A Polym. Chem. 36, 2381-2387 https://doi.org/10.1002/(SICI)1099-0518(19980930)36:13<2381::AID-POLA25>3.0.CO;2-5
  71. Qi, Q.S., B.H.A. Rehm, and A. Steinbuchel. 1997. Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157, 155-162 https://doi.org/10.1111/j.1574-6968.1997.tb12767.x
  72. Renard, E., M. Walls, Ph. Guerin, and V. Langlois. 2004. Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polym. Degrad. Stab. 85, 779-787 https://doi.org/10.1016/j.polymdegradstab.2003.11.019
  73. Rhee, Y.H., Y.H. Kim, and K.S. Shin. 2006. Characterization of an extracellular poly(3-hydroxyoctanoate) depolymerase from the marine isolate, Pseudomonas luteola M13-4. Enz. Microb. Technol. 38, 529-535 https://doi.org/10.1016/j.enzmictec.2005.07.006
  74. Roberts, J.D., J. Kraut, R.A. Alden, and J.J. Birktoft. 1972. Subtilisin: a stereochemical mechanism involving transition-state stabilization. Biochemistry 11, 4293-4303 https://doi.org/10.1021/bi00773a016
  75. Schirmer, A., D. Jendrossek, and H.G. Schlegel. 1993. Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13. Appl. Environ. Microbiol. 59, 1220-1227 https://doi.org/10.1128/AEM.69.2.1220-1228.2003
  76. Schirmer, A. and D. Jendrossek. 1994. Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product. J. Bacteriol. 176, 7065-7073
  77. Scholz, C., R.C. Fuller, and R.W. Lenz. 1994. Growth and polymer incorporation of Pseudomonas oleovorans on alkyl esters of heptanoic acid. Macromolecules 27, 2886-2889 https://doi.org/10.1021/ma00088a033
  78. Song, J.J. and S.C. Yoon. 1996. Biosynthesis of novel aromatic copolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl. Environ. Microbiol. 62, 536- 544
  79. Steinbuchel, A. and H.E. Valentin. 1995. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128, 219-228 https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
  80. Steinbuchel, A. and S. Hein, 2001. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv. Biochem. Eng. Biotechnol. 71, 81-123 https://doi.org/10.1007/3-540-40021-4_3
  81. Steinbuchel, A. and T. Lutke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16, 81-96 https://doi.org/10.1016/S1369-703X(03)00036-6
  82. Suyama, T., Y. Tokiwa, P. Ouichanpagdee, T. Kanagawa, and Y. Kamagata. 1998. Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl. Environ. Microbiol. 64, 5008-5001
  83. Takagi, Y., M. Hashii, A. Maehara, and T. Yamane. 1999. Biosynthesis of polyhydroxyalkanoate with a thiophenoxy side group obtained from Pseudomonas putida. Macromolecules 32, 8315-8318 https://doi.org/10.1021/ma981337c
  84. Taki, H., K. Syutsubo, R.G. Mattison, and S. Harayama. 2007. Identification and characterization of o-xylene-degrading Rhodococcus spp. Which were dominant species in the remediation of oxylene- contaminated soils. Biodegradation 18, 17-26 https://doi.org/10.1007/s10532-005-9030-x
  85. Timm, A. and A. Steinbuchel. 1990. Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl. Environ. Microbiol. 56, 3360-3367
  86. Tobin, K.M. and K.E. O'Connor. 2005. Polyhydroxyalkanoate accumulating diversity of Pseudomonas species utilizing aromatic hydrocarbons. FEMS Microbiol. Lett. 253, 111-118 https://doi.org/10.1016/j.femsle.2005.09.025
  87. Tsuge, T., K. Taguchi, S. Taguchi, and Y. Doi. 2003. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid $\beta$ -oxidation. Int. J. Biol. Macromol. 31, 195-205 https://doi.org/10.1016/S0141-8130(02)00082-X
  88. Valappil, S.P., A.R. Boccaccini, C. Bucke, and I. Roy. 2007. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van Leeuwenhoek 91, 1-17
  89. Volova, T., E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya. 2003. Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem. Eng. J. 16, 125-133 https://doi.org/10.1016/S1369-703X(03)00038-X
  90. Williams, S.F., D.P. Martin, D.M. Horowitz, and O.P. Peoples. 1999. PHA applications: addressing the price performance issue I. Tissue engineering. Int. J. Biol. Macromol. 25, 111-121 https://doi.org/10.1016/S0141-8130(99)00022-7
  91. Witholt, B. and B. Kessler. 1999. Perspectives of medium chain length poly(hydroxyalkanoates). Curr. Opin. Biotechnol. 10, 279-285 https://doi.org/10.1016/S0958-1669(99)80049-4
  92. Zinn, M., B. Witholt, and T. Egli. 2001. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv. Drug Del. Rev. 53, 5-21 https://doi.org/10.1016/S0169-409X(01)00218-6