Simultaneous Detection of Cytomegalovirus, Epstein-Barr Virus, Hepatitis B Virus, and Parvovirus by a Multiplex PCR

다중 중합효소 연쇄반응을 이용한 DNA 바이러스의 동시검출

  • Published : 2007.03.31

Abstract

We describe a multiplex PCR method that can detect and differentiate simultaneously four different kinds of DNA viruses, Epstein-Barr virus (EBV), cytomegalovirus (CMV), hepatitis B virus (HBV) and parvovirus B19 (B19). Primers for the multiplex PCR reaction were designed to amplify specific regions of the EBV (pol), CMV (pol), HBV (pol) and B19 (ns) viral genomes and used to simultaneously detect individual viruses. In order to achieve optimal sensitivity and specificity for multiplex PCR, the thermo-cycling parameters, primer sequences, and concentration of each reaction components were optimized systematically. The sensitivity of the detection method ranged between 5 and 10 copies of viral genome with a mixture of multiple primer pairs. Furthermore, this highly sensitive test showed no cross-reactivity among the four viruses. Thus, the results obtained in this study provide evidence that the assay system is a good tool for supporting the diagnosis of viral infection and contamination.

Epstein-Barr virus (EBV), cytomegalovirus (CMV), hepatitis B virus (HBV), parvovirus B19 (B19)등 4종의 바이러스는 인체에 감염을 일으키는 병원체로서 DNA를 유전물질로 함유한다. 각 바이러스 유전자의 염기서열을 분석하여 EBV CMV, HBV의 pol 유전자와 B19의 ns 유전자에 특이적으로 결합할 수 있는 primer를 설계 제작하고 단일 시험으로 4종의 바이러스를 동시에 검출할 수 있는 다중 중합효소 연쇄반응(Multiplex PCR)법을 확립하였다. Primer 염기서열, PCR 반응조성물의 농도, PCR 반응시간 및 온도조건을 최적화하여 민감도를 증대시킴으로써, 단일 시험으로 5-10 분자수의 유전물질까지 검출이 가능하였다. 또한 4종의 바이러스 사이에 교차반응이 일어나지 않았으며 생체시료를 이용한 시험에서도 특이성과 민감도가 유지됨을 확인하였다. 그러므로 본 연구에서 확립한 다중 중합효소 연쇄반응은 세포배양액 또는 생체 시료에 감염된 4종 DNA 바이러스진단에 효율적으로 이용할 수 있을 것이라고 판단된다.

Keywords

References

  1. Anderson, M.J., S.E. Jones, and A.C. Minson. 1985. Diagnosis of human parvovirus infection by dot-dot hybridization using cloned viral DNA. J. Med. Virol. 15, 163-172 https://doi.org/10.1002/jmv.1890150209
  2. Brownie, J., S. Shawcross, J. Theaker, D. Whitcombe, and R. Ferrie. 1997. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25, 3235-3241 https://doi.org/10.1093/nar/25.16.3235
  3. Burgart, L., R. Robinson, M. Heller, W. Wike, O. Iakoubova, and J. Chenville. 1992. Multiplex polymerase chain reaction. Mod. Pathol. 5, 320-323 https://doi.org/10.1038/sj.mp.4000708
  4. Chamberlain, J.S., R.A. Gibbs, J.E. Ranier, P.N. Nguyen, and C.T. Caskey. 1990. Multiplex PCR for the diagnosis of Duchenne muscular dystrophy, p. 38-46. In Gelfand, D.H., M.A. Innis, J.J. Shinsky, and T. J. White (ed), PCR protocols: a guide to methods and applications. Academic Press, San Diego, Calif, USA
  5. Chamberlain, J.S., R.A Gibbs, J.E. Ranier, P.N. Nguyen, and C.T. Caskey. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16, 11141-11156 https://doi.org/10.1093/nar/16.23.11141
  6. DeFillippes, F.M. 1991. Decontaminating the polymerase chain reaction. Biotechniques 10, 26-29
  7. Dieffenbach, C.W., M.J. Lowe, and G.S. Dveksler. 1993. General concepts for PCR primer design. PCR Methods Appl. 3, S30-37 https://doi.org/10.1101/gr.3.3.S30
  8. Edwards, M.C. and R.A. Gibbs. 1994. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 3, S65-75 https://doi.org/10.1101/gr.3.4.S65
  9. Elnifro, E.M., A.M. Ashshi, R.J. Cooper, and P.E. Klapper. 2000. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13, 559-570 https://doi.org/10.1128/CMR.13.4.559-570.2000
  10. Henegariu, O., N.A. Heerema, S.R. Dlouhy, G.H. Vance, and P.H. Vogt. 1997. Multiplex PCR: critical parameters and step-by-step protocol. BioTechniques 23, 504-511
  11. Hengen, P.N. 1997. Optimizing multiplex and LA-PCR with betaine. Trends Biol. Sci. 22, 225-226 https://doi.org/10.1016/S0968-0004(97)01069-4
  12. Jackson, R., D.J. Morris, R.J. Cooper, A.S. Bailey, P.E. Klapper, and G.M, Cleator. 1996. Multiplex polymerase chain reaction for adenovirus and herpes simplex virus in eye swabs. J. Vioal. Methods 56, 41-48 https://doi.org/10.1016/0166-0934(95)01903-0
  13. Jain, S., D. Wyatt, C. McCaughey, H.J. O'Neill, and P.V. Coyle. 2001. Nested multiplex polymerase chain reaction for the diagnosis of cutaneous herpes simplex and herpes zoster infections and a comparison with electronmicroscopy. J. Med. Virol. 63, 52-56 https://doi.org/10.1002/1096-9071(200101)63:1<52::AID-JMV1007>3.0.CO;2-H
  14. Jin, L., A. Richards, and D.W.G. Brown. 1996. Development of a dual target-PCR for detection and characterization of measles virus in clinical specimens. Mol. Cell. Probes 10, 191-200 https://doi.org/10.1006/mcpr.1996.0027
  15. Kitchin, P.A., A. Szotyori, C. Fromholc, and N. Almond. 1990. Avoidance of false positive. Nature 344, 201 https://doi.org/10.1038/344201a0
  16. Kwock, S. and R. Higuchi. 1989. Avoiding false positives with PCR Nature 339, 237-238 https://doi.org/10.1038/339237a0
  17. Markoulatos, P., A. Georgopoulou, N. Siafakas, E. Plakokefalos, G. Tzanakaki, and J. Kourea-Kremastinou. 2001. Laboratory diagnosis of common Herpesvirus infections of the central nervous system by a multiplex PCR assay. J. Clin. Microbiol. 39, 4426-4432 https://doi.org/10.1128/JCM.39.12.4426-4432.2001
  18. McElhinney, L.M., R.J. Cooper, and D.J. Morris. 1995. Multiplex polymerase chain reaction for human herpesvirus-6, human cytomegalovirus, and human $\beta$-globin DNA J. Virol. Methods 53, 223-233 https://doi.org/10.1016/0166-0934(95)00019-Q
  19. McOmish, F., P.L. Yap, A. Jordan, H. Hart, B.J. Cohen, and P. Simmonds. 1993. Detection of parvovirus B19 in donated blood: a model system for screening by polymerase chain reaction. J. Clin. Microbiol. 31, 323-328
  20. Mori, J., A.M. Field, J.P. Clewley, and B.J. Cohen. 1989. Dot blot hybridization assay of B19 virus DNA in clinical specimens. J. Clin. Microbiol. 27, 459-464
  21. Myeroson, D., P.A. Lingenfelter, C.A. Gleaves, J.D. Meyers, and R.A. Bowden. 1993. Diagnosis of cytomegalovirus pneumonia by polymerase chain reaction with archived frozen lung tissue and bronchoalveolar lavage fluid. Am. J. Clin. Pathol. 100, 407-413 https://doi.org/10.1093/ajcp/100.4.407
  22. Quereda, C., I. Corral, F. Laguna, M.E. Valencia, A. Tenorio, J.lE., Echeverria, E. Navas, P. Martin-Davila, A. Moreno, V. Moreno, J.M. Gonzalez-Lahoz, J.R. Arribas, and A. Guerrero. 2000. Diagnostic utility of a multiplex herpesvirus PCR assay performed with cerebrospinal fluid from human immunodeficiency virus-infected patients with neurological disorders. J. Clin. Microbiol. 38, 3061-3067
  23. Roux, K.H. 1995. Optimization and troubleshooting in PCR PCR Methods Appl. 4, SI85-194 https://doi.org/10.1101/gr.4.5.S185
  24. Sarkar, G. and S.S. Sommer. 1991. Parameters affecting susceptibility of PCR contamination to UV inactivation. BioTechniques 10, 590-594
  25. Sherlock, J., V. Cirigliano, M. Petrou, B. Tutescheck, and M. Adinolfi. 1998. Assessment of diagnostic quantitative fluorescent multiplex polymerase chain reaction assays performed on single cells. Ann. Hum. Genet. 62, 9-23 https://doi.org/10.1017/S0003480098006630
  26. Shuber, A.P.,J. Skoletsy, R. Stem, and B.L. Handelin. 1993. Efficient 12-mutation testing in the CFTR gene: a general model for complex mutation analysis. Hum. Mol. Genet. 2, 153-158 https://doi.org/10.1093/hmg/2.2.153
  27. Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625-630
  28. Vangrysperre, W. and K. DeClercq. 1996. Rapid and sensitive polymerase chain reaction based detection and typing of foot-and-mouth disease virus in clinical samples and cell culture isolates, combined with a simultaneous differentiation with other genornically and/or symptomatically related viruses. Arch. Viol. 141, 331-344