DOI QR코드

DOI QR Code

Geoacoustic Velocity of Basement and Tertiary Successions of the Okgye and Bukpyeong Coast, East Sea

동해 옥계, 북평 연안 기반암의 지음향 속도와 제3기 퇴적층

  • Ryang, Woo-Hun (Division of Science Education/Institute of Science Education, Chonbuk National University) ;
  • Kwon, Yi-Kyun (Petroleum and Marine Resources Division, Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Jin, Jae-Hwa (Petroleum and Marine Resources Division, Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Kim, Hyun-Tae (Petroleum and Marine Resources Division, Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Lee, Chi-Won (Petroleum and Marine Resources Division, Korea Institute of Geoscience and Mining Resources (KIGAM))
  • 양우헌 (전북대학교 지구과학교육과/과학교육연구소) ;
  • 권이균 (한국지질자원연구원 석유해저자원연구부) ;
  • 진재화 (한국지질자원연구원 석유해저자원연구부) ;
  • 김현태 (한국지질자원연구원 석유해저자원연구부) ;
  • 이치원 (한국지질자원연구원 석유해저자원연구부)
  • Published : 2007.06.30

Abstract

A geoacoustic modeling has been developed to predict sound transmission through the submarine layers of sediment and rock. It demands a geoacoustic model with the measured, extrapolated, and predicted values of geoacoustic parameters controlling acoustic propagation. In the coastal areas of Okgye and Bukpyeong, the East Sea, the marine succession consists of Quaternary/Tertiary deposits and acoustic basement. The basement of Okgye coastal area is indicative of siliciclastics of the Pyeongan Group in Paleozoic, and the average velocities of P-wave and S-wave are 4276 m/s and 2400 m/s, respectively. The basement of Bukpyeong coastal area is indicative of limestone of the Joseon Supergroup in early Paleozoic, and the average velocities of P-wave and S-wave are 5542 m/s and 2742 m/s, respectively.

지음향 모델링은 해저지층을 통한 음파 전달과정을 모형하기 위해 발달해 왔다. 이러한 작업은 음파 전달을 제어하는 지층의 지음향 특성값을 측정 추론 예측한 값을 필요로 한다. 동해안 옥계와 북평지역 연안에서, 해저지층은 제4기층과 함께 제3기 퇴적층, 음향학적 기반암 등으로 구성된다. 옥계 연안지역 해저지층의 기반암은 주로 고생대 평안층군의 암석으로 해석되며, 이 암석의 평균 P파와 S파 속도값은 각각 4276 m/s와 2400 m/s이다. 북평 연안지역 해저지층의 기반암은 주로 고생대 초기 조선누층군의 석회암으로 해석되며, 이 암석의 평균 P파와 S파 속도값은 각각 5542 m/s와 2742 m/s이다.

Keywords

References

  1. 김정찬, 고희재, 이승렬, 이창범, 최성자, 박기화, 2001, 1:250,000 강릉-속초 지질도폭 설명서. 한국지질자원연구원, 76p
  2. 이융남, 이윤수, 윤선, 2003, 강원도 동해시 북평층에서 산출된 잉어과 인두치. 지질학회지, 39, 199-210
  3. Abbot, P., Celuzza, S., Dyer, I., Gomes, B., Fulford, J., Lynch, J., Gawarkiewicz, G, and Volak, D., 2001, Effects of Korea littoral environment on acoustic propagation. IEEE Journal of Oceanic Engineering, 26, 266-284 https://doi.org/10.1109/48.922793
  4. Bachman, R.T., Schey, P.W., Booth, N.O., and Ryan, F.J., 1996, Geoacoustic databases for matched-field processing: preliminary results in shallow water off San Diego, California. Journal of the Acoustical Society of America, 99, 2077-2085 https://doi.org/10.1121/1.415394
  5. Badiey, M., Cheng, A.H-D, and Mu, Y., 1998, From geology to geoacoustics - evaluation of Biot-Stoll sound speed and attenuation for shallow water acoustics. Journal of Acoustical Society of America, 103, 309-320 https://doi.org/10.1121/1.421136
  6. Cederberg, R.J., Siegmann, W.L., and Carey, W.M., 1995, Influence of geoacoustic modeling on predictability of low-frequency propagation in range-dependent, shallow-water environments. Journal of the Acoustical Society of America, 97, 2754-2766 https://doi.org/10.1121/1.411907
  7. Chough, S.K., Lee, H.J., and Yoon, S.H, 2000, Marine geology of Korean seas, Elsevier, Amsterdam, Nether-land, 313 p
  8. Frisk, GV., Doutt, J.A, and Hays, E.E, 1986, Geoacoustic models for the Icelandic Basin. Journal of the Acoustical Society of America, 80, 591-600 https://doi.org/10.1121/1.394054
  9. Hamilton, E.L, 1974, Geoacoustic models of the sea floor. In Hampton, L, (ed.), Physics of sound in marine sediments. Plenum Press, New York, USA, 181-221
  10. Hamilton, E.L, 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68 1313-1339 https://doi.org/10.1121/1.385100
  11. Hamilton, E.L, 1987. Acoustic properties of sediments. In Lara-Saenz, A, Ranz-Guerra, C, and Carbo-Fite, C, (eds.). Acoustics and ocean bottom. Consejo Superior de Investigaciones Cientificas (C.S.I.C), Madrid, 3-58
  12. Hampton, L, 1974, Physics of Sound in Marine Sediments. Plenum Press, New York, USA, 569 p
  13. Hovem, J.M, Richardson, M.D, and Stoll, R.D, 1991, Shear waves in marine sediments. Kluwer Academic Pubs, Dordrecht, 593 p
  14. Kwon, Y.K., 2005, I. Sequence stratigraphy of the Tae-baek Group (Cambrian-Ordovician), mideast Korea and II. Seismic stratigraphy of the western South Korea Plateau, East Sea. Unpublished Ph.D. thesis, Seoul National University, Seoul, Korea, 205 p
  15. Kwon, Y.K., Yoon, S.H, Chough, S.K, Lee, C.W, Ryu, B.J., and Kim, YG, 2007, Seismic stratigraphy of the western South Korea Plateau, East Sea (Sea of Japan). Island Arc, in review
  16. Lee, Y.N, 2004, The first Cyprinid fish and small mammal fossils from the Korean Peninsula. Journal of Vertebrate Paleontology, 24, 489-493 https://doi.org/10.1671/2273
  17. Pace, N.G, 1983, Acoustics and the sea-bed. Bath University Press, Bath, 436 p
  18. Ryang, W.H, Kwon, Y.K., Jin, J.H., Kim, H.T., Lee, C.W, Jung, J.H, Kim, D.C, Choi, J.H, Kim, YG, and Kim, S, 2007, Geoacoustic characteristics of P-wave velocity in Donghae City-Ulleung Island Line, East Sea: Preliminary Results. The Journal of the Acoustical Society of Korea, 26, 44-49
  19. Stoll, R.D, 1989. Sediment acoustics. Springer-Verlag, Berlin, Germany, 155 p
  20. Zhou, J.-X, Zhang, X.-Z, Rogers, P.H, and Jarzynski, J, 1987, Geoacoustic parameters in a stratified sea bottom from shallow-water acoustic propagation. Journal of the Acoustical Society of America, 82, 2068-2074 https://doi.org/10.1121/1.395651

Cited by

  1. Geoacoustic Model of Coastal Bottom Strata at Jeongdongjin in the Korean Continental Margin of the East Sea vol.37, pp.4, 2016, https://doi.org/10.5467/JKESS.2016.37.4.200
  2. Geoacoustic Model at the SSDP-105 Long-core Site of the Ulsan Coastal Area, the East Sea vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.154