DOI QR코드

DOI QR Code

Low Temperature Optical Properties of NiO coated ZnO Nanorods

NiO 코팅 두께에 따른 ZnO 나노막대의 저온분광특성

  • Shin, Y.H. (Department of Applied Physics, Dankook University) ;
  • Park, Y.H. (Department of Applied Physics, Dankook University) ;
  • Kim, Yong-Min (Department of Applied Physics, Dankook University)
  • 신용호 (단국대학교 응용물리학과) ;
  • 박영환 (단국대학교 응용물리학과) ;
  • 김용민 (단국대학교 응용물리학과)
  • Published : 2007.07.30

Abstract

We fabricated NiO coated ZnO nanorods using ZnO nanorods grown on a Si substrate. After thermal hydrogenation process of these NiO-ZnO core-shell nanorods, we confirm that Ni nanodots were built up on the surface of ZnO nanorods. Photoluminescence (PL) measurements at T=5 K were made to understand the optical properties of these various nanorods. As samples sequencially transformed into $ZnO{\rightarrow}NiO-ZnO{\rightarrow}Ni$ nanodot-ZnO, PL transition energies and intensities are varied as well. In comparison to pure ZnO nanorod, the acceptor bound exciton ($A^0X$) became the minor peak for NiO-ZnO nanorods. On the other hand, for Ni nanodot-ZnO sample, ($A^0X$) transition peak intensity became the most dominant peak. This is due to the fact that during thermal hydrogenation process, appreciable amounts of Ni and hydrogen ions defused into ZnO nanorod which played as accepters.

실리콘 기판위에 성장된 ZnO 나노막대에 NiO를 코팅하여 core-shell 형태의 나노막대를 제작하였다. 이렇게 제작된 나노막대를 수소 분위기에서 열처리한 결과 ZnO 나노막대 표면에 Ni 나노점들이 형성됨을 확인하였다. 이러한 여러 종류의 나노막대의 저온(5K)에서 광발광 (photoluminescence) 특성을 연구하였는데 $ZnO{\rightarrow}NiO-ZnO{\rightarrow}Ni$ 나노점-ZnO 순서로 시료가 변화함에 따라 속박된 exciton들의 전이 에너지와 진폭이 변화함을 확인하였다. ZnO에 비하여 NiO-ZnO 시료의 경우 받개에 속박된 exciton ($A^0X$) 전이가 크게 감소함을 보이나 Ni 나노점-ZnO 시료의 경우 $A^0X$ 전이가 가장 우세함을 보인다. 이러한 현상은 수소화 과정에서 침투한 Ni과 수소 이온이 주개로 작용하였기 때문이다.

Keywords

References

  1. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999) https://doi.org/10.1063/1.369577
  2. B. P. Zhang, N. T. Binh, and Y. Segawa, Y. Kashiwaba and K. Haga, Appl. Phys. Lett. 84, 586 (2004) https://doi.org/10.1063/1.1642755
  3. J. Grawboska, M. Meaney, K. K. Nanda, J.-P. Mosnier, M. O. Henry, J.-R. Duclère and E. McGlynn, Phys. Rev. B 71, 115439 (2005) https://doi.org/10.1103/PhysRevB.71.115439
  4. D. J. Qiu, H. Z. Wua, A. M. Feng, Y. F. Lao, N. B. Chen, and T. N. Xu, Appl. Surf. Sci. 222, 263 (2004) https://doi.org/10.1016/j.apsusc.2003.08.015
  5. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, Adv. Mater. 13, 113 (2001) https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  6. C. J. Lee. T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett. 81, 3648 (2002) https://doi.org/10.1063/1.1518810
  7. S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng, and C. J. Huang, J. Phys. D 37, 2274 (2004) https://doi.org/10.1088/0022-3727/37/16/009
  8. H. He, Jr., Chang S. Lao, Lih J. Chen, Dragomir Davidovic, and Zhong L. Wang, J. Am. Chem. Soc. 127, 16376 (2005) and references therein https://doi.org/10.1021/ja0559193
  9. R. P. Wang, A. W. Sleight, and D. Cleary, Chem. Mater. 8, 433 (1996) https://doi.org/10.1021/cm950372k
  10. H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, Adv. Mater. 14, 158 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  11. C. J. Youn, T. S. Jeong, M. S. Han, and J. H. Kim, J. Crys. Growth 261, 526 (2004) https://doi.org/10.1016/j.jcrysgro.2003.09.044
  12. H. Munekata et al., Phys. Rev. Lett. 63, 1849 (1989) https://doi.org/10.1103/PhysRevLett.63.1849
  13. S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1678 (1994)
  14. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. Prabhakara Rao, and V. K. Vaidyan, Vacuum 68, 149 (2003)
  15. V. A. Fonoberov, K. A. Alim, and A. A. Balandin, Phys. Rev. B 73, 165317 (2006), and references therein https://doi.org/10.1103/PhysRevB.73.165317
  16. C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000) https://doi.org/10.1103/PhysRevLett.85.1012
  17. Y. H. Park, Y. H. Shin, S. J. Noh, Y. Kim, S. S. Lee, C. G. Kim, K. S. An, and C. Y. Park, Appl. Phys. Lett. 91, 012102 (2007) https://doi.org/10.1063/1.2753717