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ABSTRACT-This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In
general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories:
IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method
was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based
method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-
based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and
peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate
peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with
images captured on the highway, it was shown that the proposed method was able to overcome problems in previous
implementations while being applied successfully to highway collision warning/avoidance conditions. In addition,
comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to
cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system.
Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring

the distance to upcoming obstacles could successfully prevent collisions.
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1. INTRODUCTION

Collision Avoidance Systems in general consist of four
components: environment recognition, electronically con-
trolled vehicles, collision avoidance controllers, and HMIs
(Human Machine Interfaces) (Blum and Escandarian,
2002). Environment recognition refers to fixed environ-
ment information such as roadway geometry, weather
conditions, and geometrical locations, as well as target
vehicle information provided to collision avoidance con-
trollers. Electronically controlled vehicles refer to motion
sensor outputs used for the estimation of vehicle states,
such as wheel speed sensors, steering angle sensors, yaw-
rate sensors, and acceleration sensors. At the same time,
electronically-controlled vehicles implement steering,
braking, and acceleration commands transferred via the
CAN (Controller Area Network) using X-by-Wire systems.
Collision avoidance controllers fulfill risk assessment,
path planning for collision avoidance, and command
generation/transmission for path tracking. HMIs receive
driver intension or operation commands and inform
drivers of risk assessment results and control situations.
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Vehicle detection methods can be categorized as either
or passive. Active sensor-based methods include milli-
meter wave radar-based (Park et al., 2003), Lidar-based
(Light Detection and Ranging) (Wang et al, 2003;
Hancock et al., 1997) and acoustic-based (Chellappa et
al., 2004) methods. Optical sensors, such as normal
cameras, are usually referred to as passive sensors be-
cause they acquire data in a non-intrusive way. Generally,
passive sensors offer some advantages over active sensors:
low cost, wide spatial coverage, high spatial resolution,
fast scanning speed, and no interference that might be
caused when a large number of vehicles move simultane-
ously in the same direction using the same type of sensor
(Herbert, 2000).

Sun’s recent review of vision-based vehicle detection
effectively shows the state of the art in terms of the
passive sensor-based method (Sun er al., 2006). In this
research, the vehicle detection procedure was separated
into two steps: HG (Hypothesis Generation) and HV
{(Hypothesis Verification).

Approaches to the HG step can be classified mainly
into three categories: knowledge-based, motion-based,
and stereo-based approaches. The objective of the HG
step is to quickly find candidate vehicle locations in an
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image. Knowledge-based methods employ a priori know-
ledge to estimate vehicle locations in an image using
techniques such as symmetry, color, shadow, corners,
texture, vehicle light, and vertical/horizontal edges. Motion-
based methods employ relative motion via the calculation
of optical flow (Giachetti et al., 1998). There are two
types of stereo-based methods: disparity map-based and
IPM (Inverse Perspective Mapping)-based methods.

The input to the HV step is the set of hypothesized
locations obtained during the HG step. Approaches to the
HV step can be classified as template-based or appear-
ance-based approaches. Template-based approaches use
predefined patterns and perform correlations between the
given image and the template (Ito et al., 1995). Appear-
ance-based approaches are further divided into a two-
class pattern classification problem: vehicles versus non-
vehicles. Appearance-based approaches discover the
characteristics of the appearance of any given vehicle by
using a set of training images to capture the variability of
the vehicle class (Sun et al., 2005).

The major interest of this paper is stereo vision-based
vehicle detection for longitudinal collision warning/
avoidance via braking. Although dense stereo matching
algorithms are progressing continuously and are able to
recognize the shapes and judge the distances of objects
precisely and minutely, they are not useful in automotive
collision warning/avoidance because the development
direction is not aimed at real-time computation and target
selection (Brown et al., 2003; Scharstein and Szeliski,
2002; Kastrinaki et al., 2003). This may be a reason why
Sun’s review.mentions only two kinds of stereo vision-
based methods.

The IPM-based method generates two virtual images
respectively for left and right images by assuming that
every object is located on a flat ground plane. Then, the
difference between the remapped left and right images
reveals the location of obstacles, because anything locat-
ed above the road makes large clusters of nonzero pixels
in the difference image (Bertozzi and Broggi, 1998).
Because of the flat ground plane assumption, the perfor-
mance of the IPM-based method is degraded severely
when the tilt angle of the camera changes on uneven
roadways.

The difference between corresponding pixels in the left
and right images is called disparity. The disparities of all
the image points form the disparity-map. Once the dis-
parity map is available, all the pixels within the depth of
interest, according to a disparity interval, are determined
and accumulated in a disparity histogram. If an obstacle
is present within the depth of interest, then a peak point
will occur at the corresponding histogram bin (Franke
and Kutzbch, 1996). Because Franke’s implementation
was developed for stop-and-go applications, it used a
fixed rectangular ROI and peak detection by constant

threshold and then simply recognized the closest object,
i.e. the largest disparity, as the control target. This ap-
proach could not be applied directly to highway collision
warning/avoidance because multiple preceding vehicles
exist over a wide distance range.

This paper proposes a way to measure the distance
between the ego-vehicle and target vehicles. The HG step
of this paper consists of ROI establishment using
recognized lane information, edge feature-based stereo
matching, disparity histogram generation, peak detection
in the disparity histogram using the threshold-line, and
candidate validation by peakness evaluation. The HV
step of this paper verifies candidate locations by using the
correlation of the left and right edge images with the
candidate disparity, which is similar to the template
matching-based HV. The main contribution of this paper
is extending the disparity map-based method to highway
applications by establishing the ROI using recognized
lane information, and by compensating for the variation
of peak height using the threshold-line. All of the adopted
operations proved to be suitable for real-time operations
and parallel implementations by VHDL (Very-high-speed-
integrated-circuit Hardware Description Language).
Experimental results showed that the proposed method
was able to successfully measure the distance to the
preceding vehicle and was able to overcome curved road
problems and road surface noise factors. Thanks to the
wider FOV (Field Of View) of the camera, the vision-
based method detected cutting-in vehicles faster than a
laser radar. Experiments using a test vehicle with the ESP
(Electronic Stability Program) showed that the longitudi-
nal collision avoidance system (incorporating the propo-
sed method) was able to successfully stop vehicles before
collisions.

2. STEREO VISION-BASED LONGITUDINAL
COLLISION AVOIDANCE SYSTEM

This system consists of five main components: a stereo
vision-based obstacle distance measurement, a dynamic
model of the ego-vehicle, the collision avoidance algorithm,
active braking, and the HMI (Human Machine Interface).
This dynamic model of the ego-vehicle estimates requir-
ed state variables for the ego-vehicle by utilizing sensors
already installed on the vehicle such as wheel speed,
lateral acceleration, yaw-rate, and steering angle. The
collision avoidance algorithm measures the risk of colli-
sion using current vehicle states and obstacle states, and
then sends the required braking commands to active
braking systems via CAN in order to avoid upcoming
collisions. The active braking system should be able to
generate the required braking force without requiring the
driver to push the pedal. In our system, the Mando MGH-
series ESP was used as an active braking actuator. Figure
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Figure 1. The architecture of the longitudinal collision
avoidance system.
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Figure 2. Vision system architecture.

1 shows the brief architecture of the system.

Stereo vision-based obstacle distance measurement
consists of six phases as shown in Figure 2: traveling lane
recognition, ROI establishment, edge feature-based stereo
matching, disparity histogram generation, peak detection/
validation in the disparity histogram, and edge feature
correlation-based candidate verification. The proposed
method is basically an extension or modification of
Franke's disparity histogram-based obstacle distance
measurement (Franke and Kutzbch, 1996). It was assum-
ed that the preceding vehicle will make a definite peak in
the disparity histogram and peak detection would measure
the distance. In order to make the disparity histogram
emphasize the preceding vehicle and ignore potential
disturbances effectively, the fixed rectangular ROI was
replaced with an adaptive ROI according to the recogni-
zed traveling lane region, i.e. a traveling lane-based ROL
Peak height variation in the disparity histogram with
respect to distance was compensated for by replacing
constant threshold-based peak detection with threshold-

line-based peak detection and peakness evaluation-based
validation. In addition, the recognized traveling lane was
utilized by the LKS (Lane Keeping System)/LKAS (Lane
Keeping Assist System) controller.

3. ENHANCED DISPARITY HISTOGRAM-
BASED HYPOTHESIS GENERATION

3.1. Travelling Lane-Based ROI Establishment

The ROI for the following operations was established
according to recognized traveling lanes. In general, ROI
establishment is important in two aspects: to reduce
computational load and to improve the robustness of
systems. Furthermore, if an established ROI in general
contains sufficient image portions to detect the distance
to the preceding vehicle, explicit object boundary detec-
tion is unnecessary.

McCall’s recent in-depth survey shows the state of the
art in vision-based lane detection and tracking techno-
logy, which has developed over the last 15 to 20 years
(McCall and Trivedi, 2006). Although there have been a
lot of advanced lane detection technologies, we imple-
mented a simple lane detection method similar to
Bertozzi’s approach (Bertozzi, 1998) to verify the feasi-
bility of our main proposal, i.e. traveling lane-based ROI
and threshold-line based peak detection in the disparity
histogram.

The implemented lane detection method consists of
four steps: inverse perspective warped image generation,
lane marking template matching, lane marking grouping,
and curve fitting. Some assumptions about the structured
nature of road surfaces include: (1) the road/lane texture
is consistent; (2) the road/lane width is locally constant;
(3) road markings follow strict rules for appearance or
placement; and (4) the road is a flat plane or follows a

() One of two input images (b) Inverse perspective
Warped image

(c) Detected traveling lane (d) Established ROI

Figure 3. Traveling lane-based ROI establishment.
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strict model for elevation change (McCall and Trivedi,
2006). It is noteworthy that the absence of flat ground in
lane detection is not as serious as in obstacle distance
measurement.

An inverse perspective warped image, or bird’s eye
view image, was obtained by using the homography
between the image plane and the ground plane derived
from the camera height and the tilt angle (Batavia et al.,
1997). Figure 3(a) is an input image and Figure 3(b) is
the inverse perspective warped image corresponding to
the input image. The inverse perspective warped image
eliminates the effect of perspective distortion. Lane mark-
ing template-matching uses the fact that lane marking
appears as a black-white-black transition with almost the
same width in the horizontal direction. Lane marking
grouping collects detected lane markings in a vertical
direction, and lane marking groups with proper spacing,
i.e. roadway width, can be recognized as left/right lane
markings. Figure 3(c) shows the detected traveling lane
information. Left lane marking and right lane marking
were modeled as a quadratic polynomial using LS (Least
Squared error)-based curve fitting. Finally, the recognized
traveling lane was remapped onto the input image as
shown in Figure 3(d). This traveling lane-based ROI
takes the place of a fixed rectangular ROI in order to cope
with highway applications.

3.2. Edge Feature-Based Stereo Matching
Feature-based stereo matching was employed to con-
struct the sparse disparity map of the input images. In
automotive vision, it is well known that vertical edges are
sufficient to detect noticeable objects (Franke and Kutzbch,
1996). Consequently, stereo matching using only vertical
edges can drastically reduce the computational load. The
feature-based stereo matching process consisted of pixel
classification and similarity-based matching.

In general, pixel classification investigates the intensity
differences between a pixel and four directly connected
neighbors so as to assign a class value to the pixel reflect-
ing the intensity configuration. It is known that feature-
based stereo matching with pixel class is fast and robust
to noise (Franke and Kutzbch, 1996; Jung et al., 2006).
Equation (1) shows how the relationship between g(x)
and g(i) was encoded, where g(x) represents the grey
value of the investigated pixel and g(i) represents the
gray value of the neighboring pixel with index i, which
was designated as shown in Figure 4(a). Consecutively,
Equation (2) and Figure 4(b) show how the class value
Class(x) was constructed by concatenating four d(i)
values. A smooth pixel was classified in the zero class
and a pixel with more edges was classified in the non-
zero class. The threshold 7 was adaptively modified to
maintain the ratio of non-zero pixels within a reasonable
range, e.g. 5~10%. Figure 5(a) shows the original image

0
3 X 1 d(3) | d2) | d(1) | 4(0)
2
(a) Neighboring (b) Class encoding
pixel index

Figure 4. Neighboring pixel indexing and class encoding.

(b) Classification results

(a) Original image

Figure 5. Pixel classification results.
and Figure 5(b) shows the pixel classification results.

Only 6.4% of the total pixels were classified in the non-
zero class.

1 if gi)-gx)>+T

d@)= 2 if g(i)-gx)<-T 1)
0 else
Class(x)=Y, (d(i)<<(2-i))=Y 4" d(i) )

Stereo matching was performed only on pixels with
vertical edges. Furthermore, stereo matching was com-
posed of step-by-step test sequences: class comparison,
class similarity, color similarity, and maximum similarity
detection (Jung et al., 2006). Only correspondence candi-
dates passing the previous test steps were investigated in
the next test step. Assuming that the vertical alignment of
the stereo rig was calibrated, the search range of a pixel
was limited to a horizontal line with a fixed displace-
ment. First, a correspondence test was performed on the
pixels in the same class as the investigated pixel. The
class similarity of the investigated pixel (x,y) with
respect to the disparity d defined by Equation (3) showed
how the candidate pixel was similar to the investigated
pixel in the sense of a 3x3 class window. The color
similarity of the investigated pixel (x,y) with respect to
disparity d defined by Equation (4) showed how the
candidate pixel was similar to the investigated pixel in
the sense of the 5x5 color window. The total similarity
defined by Equation (5) was the product of the class
similarity and the color similarity. If the highest total
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Figure 6. Stereo matching result (disparity map).

similarity was lower than a certain threshold, the investi-
gated pixel failed to find the corresponding point and was
ignored. A pixel with disparity d receiving the highest
total similarity was determined as the corresponding
point of the investigated pixel.

ClassSimilarity(x y, d) =

™3 3 Z Z S(Class, z(x+u,y+v),Class,(x+u+d,y+v))

—1 v=-1

0, Class,;#Class g,

where, f(Class,;, Class,ig,,,)={
1, Class;y; =

Class, g,

_1 |ColorSSD(x.y.d) )

ColorSimilarity(x, y, d) =1— 756 S5

where, ColorSSD(x,y,d)=

2 2 (Rleft(x+u7y+v)—Rright(x+ l“'d,J""V))Z"'
Zz 22 3| (Gupxtu,y+v)=G g (x+u+d,y+v)) '+
(Bin(x+14,y+V)—B it urd y+v))’

Similarity(x, y, d) = &)
ClassSimilarity(x, y, dyxColorSimilarity(x, y, d)

3.3. Threshold-Line-Based Peak Detection and Peakness
Evaluation-Based Validation
In general, the candidate locations of the preceding
vehicle are determined by peak detection in a disparity
histogram. Candidate generation consists of three steps:
disparity histogram construction, threshold-line-based
peak detection and peakness evaluation-based validation.
The preceding vehicle is supposed to form a peak in
the disparity histogram (Franke and Kutzbch, 1996). The
disparity histogram measures how many pixels have a
certain disparity value and are implemented as an accu-
mulator array. While investigating the disparity value of
all feature pixels within the established ROI, a histogram
bin corresponding to each disparity value increases.
Figure 7 shows an example of a disparity histogram.

Disparity

Figure 7. Disparity histogram.

Although the preceding vehicle certainly produces a
peak in the disparity histogram, the height of the peak
varies with respect to its disparity value, as shown in
Figure 8. This can be naturally derived from the fact that
distant objects appear small and near objects appear
large. Because near objects appear big, the probability of
the occurrence of vertical edge pixels is high. A near
distance means large disparity. Therefore, near objects
are expected to generate high peaks and large disparity
values. Inversely, because distant objects appear small,
the probability of the occurrence of vertical edge pixels is
low. Distant objects are expected to generate low peaks
and small disparity values.

Peak detection when using a constant threshold cannot
reflect the relationship between disparity and peak height.
If the constant threshold is too low, the false detection
rate at large disparity values increases. If threshold is set
too high to avoid false detection, the preceding vehicle
might be missed. The threshold-line with respect to dis-
parity is expected to overcome the drawback of the con-

ADUBLINIJO

Disparity

1

Far Object Near Obiject

Figure 8. Threshold line compensating for perspective
distortion.
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Figure 9. Different disparity distribution of preceding
vehicle and lane marking.

stant threshold. The threshold-line is a line passing
through the origin with its slope calibrated empirically.
The constant slope of the threshold line is justified by
feature ratio maintenance in the feature detection phase.
Peakness evaluation and the HV step will be explained
below.

In general, objects attached to the ground contribute to
a wide range of disparities because they can exist in a
wide range of distances from the camera. Contrarily,
objects located above the ground, including the preceding
vehicle, tend to contribute to a narrow range of disparities
because they exist within a narrow range of distances
from the camera, as shown in Figure 9. In other words,
the camera can observe the backs of the preceding vehi-
cles since they are parallel to the camera image plane.
Vertical edges caused by the backs of preceding vehicles
are supposed to exist almost at the same distance.

If peak P is defined as a group of continuous dis-
parities whose histogram values are above the threshold-
line, the peak width is the difference between the maxi-
mum and minimum disparity values in the group and the
peak height is the maximum difference between the
histogram value and the threshold value in the group.
Peakness evaluation encodes a priori knowledge such as:
1) a valid peak should be sharp and the ratio of the peak
height to the peak width should be high, and 2) the higher

the peak height, the more likely the peak is to be of
correct disparity; the ratio of the peak height to the thre-
shold should be high. Peakness evaluation with respect to
disparity d is defined in Equation (6). The first term
reflects the first kind of knowledge and the second term
reflects the second kind of knowledge, where h(d)
denotes the disparity histogram value of disparity d and &
denotes the slope of the threshold-line. After evaluation
of the candidate peaks, any peak below the predefined
threshold is rejected.

max (h(d)-6-d) rgagg(h(d)—&d)

Peakness(P)= dep . (6)
maxd - mind @-mediand
deP deP deP

4. EDGE FEATURE CORRELATION-BASED
HYPOTHESIS VERIFICATION

At times, peak detection can find several peaks above the
threshold-line. These peaks represent candidates for the
preceding vehicle. Among these candidates, the best one
is selected by edge feature correlation-based verification.

Because the correct disparity value refers to the dis-
placement between the left and right pixels belonging to
the preceding vehicle, the right image shifted by the
correct disparity value will be exactly overlapped on the
left image in the region of the preceding vehicle, as
shown in Figure 10. Therefore, checking the overlapping
quality of each candidate disparity can determine the
correct disparity value. The overlapping quality can be
measured within the potential vehicle boundary, a small
rectangle with the same width and half the height of a
general vehicle, and stands at the distance calculated by
candidate disparity and perspective geometry, as shown

Right Feature
Image
k.

Image

A% ,
~—n Correct disparity

Figure 10. Preceding vehicle will be overlapped with the
correct disparity value.
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Xw

(a) Inverse perspective warped view

(b) Perspective view

Figure 11. Potential vehicle boundary corresponding to
disparity d.

in Figure 11. The distance to the bottom line of the
potential vehicle boundary, Z(d), was calculated by the
relationship between the disparity and the distance, as
shown in Equation (7), where f denotes the focal length
of the camera and B denotes the baseline of the stereo
camera. The center of the bottom line, X(d), was calcu-
lated as the center of two cross-points between the ROI
boundary and the horizontal line at Z(d). The upper line
of the potential vehicle boundary was calculated by
adding half the vehicle height in the Y,, coordinates. Once
the coordinates of the four corners were determined in the
world coordinate system, (Xyw, Yw.Zyw), the corresponding
coordinates in the image coordinate system, (x,y), were
calculated by perspective geometry. Alternatively, the
bottom line of the potential vehicle boundaries in image
coordinate systems, y(d), was directly calculated by
Equation (8) (Franke, 1996), where H represents the
height of the camera position and B represents the base-
line of stereo vision. fx and fy represent the focal length of
the x-axis and the y-axis respectively, and « denotes the
tilt angle of the camera.

z(a=tE ™
y(d):c—gsha—{(%g : d—sina) ®)

The edge similarity of disparity 4 is defined as in
Equation (9) and measures the number of edge pixels that
are overlapped if shifted by the disparity. Edge similarity

is a normalized way of having a value between 0 and 1,
where £ is the set of non-zero class pixels in the left
image within the potential vehicle boundary correspond-
ing to disparity d, and N is the size of £. The edge color
similarity of disparity d is defined in Equation (10) and
measures how similar corresponding edge pixels are in
the sense of color code values (R, G, B refer to red, green,
and blue values). Edge color similarity is also a normali-
zed way of having a value between 0 and 1. The over-
lapping quality of disparity d is the product of edge
similarity and edge color similarity. Consequently, candi-
date disparity with the highest overlapping quality is
recognized as the disparity of the preceding vehicle.
Because disparity histograms might represent a kind of
dimension reduction transformation, impatient determin-
ation of the best peak would lead to a higher false
detection rate. Acceptance of multiple candidates and re-
examination of the detection principle not only increases
the true positive rate but also decreases the false positive
rate.

EdgeSimilarity(d) =

L

z S(Class,;(x, y), Class,,, (x+4d, y))
N (x.y)ee

)

" ci cl 0, Class,, # Class,y,,

where, f(Class,;,Class,y,)= 1, Class,, = Class,

EdgeColorSimilarity(d) =

1 1
— 1 = ——+/ColorSquaredError(x, y,d )]
N(xg‘eg( 256\/ (10)

where, (Rioft (.3)-Rright (x+d, 1)+
ColorSquaredError(x,y,d)= % 5 Gloft(.9)-Gright (x+d, ) >+

(Blofy (x.)-Bright (x+d,»))

5. EXPERIMENTAL RESULTS

The proposed system was validated by in-vehicle tests.
The traveling lane-based ROI establishment was vali-
dated by comparison with the fixed ROI. Threshold-line
based peak detection and peakness evaluation-based vali-
dation were validated by comparison with the constant
threshold. The distance measured by the proposed
method was compared with the distance measured by the
laser radar. Within the distance range of longitudinal
collision warning/avoidance, the proposed method show-
ed reasonable accuracy and shorter response time in
terms of cutting-in vehicle detection. Finally, we imple-
mented the proposed method with a longitudinal collision
avoidance system. By experiments with a balloon vehicle
on a test track, we confirmed that the proposed method
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(a) Stereo camera e (b) Laser radar

Figure 12. Forward-looking sensors on a test vehicle.

successfully stopped the test vehicle before a collision.

5.1. Experimental Settings

The stereo camera used in the experiments was made
with two off-the-shelf CMOS cameras and its baseline set
to 30 cm in order to be able to detect distant objects.
Figure 12(a) shows the stereo camera module that was
installed on the windshield of the test vehicle. A Caltech
calibration toolbox was used for stereo camera calibr-
ation and rectification (Bouguet, 2006). Images used for
tests and evaluations were acquired on the highway.
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(b) Distances calculated by the proposed ROI

Figure 13. Fixed ROI vs. traveling lane-based ROL

() Adaptive ROl (d) Correctly detected vehicle

Figure 14. Comparison of ROI methods in a curved road
situation.

During the experiments, one laser radar was installed on
a test vehicle as shown in Figure 12(b) in order to record
the reference distance.

5.2. Effect of Traveling Lane-Based ROI

Distances of the image sequence were calculated by two
different methods: the fixed ROI and the traveling lane-
based ROL Figure 13(a) shows the distances calculated
by the fixed ROI-based method. The distances contained
many large noise factors. Figure 13(b) shows the dis-
tances calculated by the traveling lane-based ROI method
and Table 1 shows the comparison of the two cases. The
traveling lane-based ROI method produced small average
errors compared to the fixed ROI method.

By investigating the situation on a curved road, it was
shown how the proposed traveling lane-based ROI
improved the performance of preceding vehicle detec-
tion. Figure 14(a) shows an example of the fixed ROl and
Figure 14(b) shows pixels with the same disparity values
as the output of preceding vehicle detection. Because the
road was curved, a vehicle on the adjacent lane was
detected. The correct preceding vehicle, which should
have been used for longitudinal control, was rejected
because of its comparatively smaller peak height. Figure
14(c) shows the ROI established according to the recog-
nized traveling lane. It was shown that the established
ROI successfully captured the image of the preceding
vehicle while ignoring adjacent vehicles. Figure 14(d)
shows the correctly-detected preceding vehicle.

Table 1. Error mean and variance of two ROI methods.

Fixed ROI Lane-based ROI
Error mean 5.1738 1.8509
Error variance 15.8154 1.8453
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5.3. Effect of Peak Detection by the Threshold-Line and
Peakness Evaluation

Preceding vehicle detection was tested with two different
peak detection methods: the constant threshold-based,
and threshold-line and peakness evaluation-based
methods. Figure 15(a) shows the distances calculated by
the constant threshold. The distances contained many
large noise factors. Figure 15(b) shows the distances
calculated by the threshold-line and peakness evaluation.
Table 2 shows that the proposed method produced
smaller average errors than the constant threshold-based
method. During the experiments, the constant threshold
was small so the candidate peaks never failed to include
correct ones. Pixels belonging to the background portion,

Table 2. Error mean and variance of two threshold
methods.

Constant Threshold-line and

threshold Peakness Evaluation
Error mean 4.1874 1.8509
Error variance 9.4403 1.8453

(b) Incorrect detection result

(c) Threshold-line and detected peaks

i
(d) Corrent detection result

Figure 16. Comparison of the two peak detection methods.

which generally form small peaks at small disparity values,
were detected as preceding vehicles. Errors in the con-
stant threshold-based method were caused by background
pixels and traffic markings.

By investigating critical situations, it was shown that

100

sor ———— Proposed method
P S S Laser radar

Distance (m)

] 20 40 & 8 100 120 140 160 180
Time (100msec)

Figure 17. Measured distances with a laser radar and the
proposed method.
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(b) Faster response of vison-based system

Figure 18. Effect of the vision system’s wider FOV.

the proposed threshold-line and peakness evaluation
improved peak detection performance. Figure 16(a) is an
example of the constant threshold and the detected peaks.
The peak in the circle denotes a peak recognized as a
preceding vehicle. In Figure 16(b), the traffic sign on the
ground surface corresponds to a detected peak. Figure
16(c) is an example of the threshold-line and the detected
peaks. The circled peak also denotes a peak recognized as
a preceding vehicle. In this case, thanks to threshold-line
and peakness evaluation, the correct peak, (not detected
by the constant threshold-based method) was success-
fully detected. Figure 16(d) shows that the detected peak
did in fact correspond to a preceding vehicle.

5.4. Comparison with a Laser Radar

The proposed method was verified by comparing its
output with the distance measured by a laser radar. It was
confirmed that the larger FOV of the vision system
improved response times with respect to cutting-in
vehicles when compared with laser radars.

In an open space, a test vehicle approached a vehicle
standing still and then returned to the initial position. For
the sake of safety, we performed the experiment at a test
track and did not use the traveling lane-based ROI
method. Figure 17 shows the two distance sequences

measured by the proposed system and a laser radar. The
proposed system measured the distance correctly within
the range of 10-60 m. Although the measured distance
was not petfect, it proved sufficient for collision warning
and avoidance. Furthermore, while comparing the propo-
sed method with laser radars, the vision-based system
was shown to simultaneously detect traveling lanes, which
is necessary for lane-keeping and target resolutions on
curved roads.

Another major difference between stereo vision and
laser radars is the FOV. Laser radars use a narrow FOV to
cover far distances due to the TOF (Time Of Flight)
principle. By contrast, the vision system uses a wider
FOV because it measures the bearing angle of objects.
Furthermore, the traveling-lane based ROI eliminates the
disturbance of vehicles on adjacent lanes. Figure 18 shows
the distance measurements when a vehicle was about to
cut-in. The proposed vision system detected cutting-in
vehicles faster than the laser radar. This rapid response
time is crucial for the successful management of cutting-
in vehicles.

5.5. Vehicle Test of Longitudinal Collision Avoidance
System

Using the proposed stereo vision-based obstacle distance
measurement, we implemented a longitudinal collision
avoidance system by braking. The collision avoidance
controller continuously calculated the required braking
distance by considering the ego-vehicle states and the
obstacle distance. Once the required braking distance was
smaller than the measured distance, active braking was
activated to prevent predicted collisions.

Active braking was implemented by using the Mando
MGH-25 ESP system. The collision avoidance controller
sent a deceleration command to the braking controller,
and then the braking controller implemented deceleration

) .
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g-o.2~~—7~-l\ - - </
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Jo L L 1 1
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Figure 19. Deceleration control results by ESP pressure
control.
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Figure 20. Longitudinal collision avoidance by the
proposed distance measurement and active braking.

by controlling the ESP hydraulic actuator. The first graph
of Figure 19 shows the target deceleration and the mea-
sured deceleration. The third graph of Figure 19 shows
the controlled wheel pressure and the second graph
shows the speed of the ego-vehicle.

The required braking distance D, Was calculated
using Equation (11). The first term represents the dis-
tance before the actual braking and the second term
represents the distance during deceleration with constant
deceleration control. T, denotes the time delay from
recognition to actuation and V... and ... denote the
relative velocity and deceleration between the ego-vehicle
and the obstacle, respectively. Once the required braking
distance was much smaller than the measured between-
distance, deceleration by active braking was activated.
Figure 20 shows the result of the longitudinal collision
avoidance system with a balloon target vehicle on snow
in winter. The vertical dotted line designates a warning
alert and active braking activation. The ego-vehicle was
stopped before collision with the obstacle.

2
1 V. lati
Drequired = Vrelative " Tdehzy+ —arelativeﬁelay + S (1 1)
2

2 Qcontro
6. CONCLUSION

In this paper, we have proposed a stereo vision-based
obstacle detection and distance measurement method. By
introducing traveling lane-based ROI establishment, peak
detection by threshold-line, and edge feature correlation-
based verification, we were able to overcome the pro-
blems of the existing disparity histogram-based method

and extend its applications to highway collision warning/
avoidance. Inevitable errors caused by simple stereo
matching were ignored because the disparity histogram
represented a kind of statistical method. By accepting all
probable candidates and then verifying the detection
principle strictly again, the false detection rate decreased
and the true detection rate increased. However, this
benefit required high costs, i.e. additional computation
load.

Although we were able to verify the improvement of
disparity histogram-based obstacle detection by imple-
menting a basic lane detection method, practical appli-
cations require an advanced lane detection method. Parti-
cularly, a stereo vision-based lane detection method may
improve the stability of the detection performance irre-
spective of the tilt angle change. Furthermore, commerci-
alization requires the VHDL implementation of a core
algorithm such as stereo matching, edge-feature corre-
lation, and disparity histogram generation. Possible future
work may include obstacle classification and recognition
of obstacles, e.g. vehicles, pedestrians, or standing poles.
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