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ABSTRACT-Measurement of the vibration transmitted through rotating shafts such as halfshafts in vehicles is of interest
in applications such as noise transfer analysis and the study of operating deflections. Vibration signals transmitted through
a rotating shaft usually include six degree-of-freedom components, thus making the measurement of vibration a
challenging task. In the present work, a new measurement method is presented, one that resolves the minimum of only two
one-axis accelerometer signals into all components of vibration with reasonable accuracy. The method utilizes the
Dopplerized signals obtained from accelerometers attached to a rotating shaft and a Vold-Kalman order tracking filter to
decompose signals into orders of different vibration components. The new method proposed in the present work is verified
by simulated run-up test data and applied to an experimentally obtained data set.

KEY WORDS : Rotating shaft vibration, Doppler effects, Vold-Kalman order tracking filter

1. INTRODUCTION

In the early stage of noise, vibration, and harshness (NVH)
development or the later stage of NVH refinement or
troubleshooting for a vehicle, it is often necessary to
measure the vibrations of a drivetrain system to under-
stand the noise and vibration contribution transmitted
from the engine to the interior of the vehicle (Suh and
Orzechowski, 2003; Williams and Wilson, 1997). The
noise and vibration sources are usually identified by
order tracking analysis of a run-up or run-down test. The
order tracking analysis (Gade ef al., 1995) is a useful tool
when sinusoidal frequencies of major contributors are
multiples of that of a fundamental tone (i.e., the engine
rpm in the NVH applications).

Measurement of vibration components in a rotating
shaft could be a challenging task because six vibration
components are involved (Figure 1) and all should be
measured for rotating shafts. There are two methods for a
vibration measurement of rotating shafts. One method
uses contacting sensors such as accelerometers and strain
gages, along with slip rings which allow the transmission
of electrical signals from a rotating structure to a station-
ary structure. The other measurement method uses non-
contact optical sensors such as laser Doppler vibrometry
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(LDV) and is generally considered more advanced since
the method does not require modification of the rotating
shafts due to installation of contacting sensors. This second
method has been more popularly studied (Halliwell ef al.,
1984; Wang et al., 1992; Halliwell et al., 1997; Miles et
al., 1999; Rothberg and Bell, 2004).

LDV measurement methods, however, sometimes have
disadvantages over traditional measurement methods with
contacting sensors. For instance, LDV measurements of a
target vibration component require aligning the laser beam
at specific angles. Therefore, measurements of all of the
six degree-of-freedom vibration components could be a
time-consuming task with a limited number of LDVs.
Moreover, limited access to the rotating shaft sometimes
does not allow for the necessary alignment at all.

The vibration measurement methods for rotating shafts
using contacting sensors have been used to measure only
part of the vibration component, for instance the rotational
vibration component by using a pair of accelerometers
attached axisymetrically in the circumferential directions.
No attempts have been made to measure all six degree-
of-freedom vibration components. In the present work, a
new measurement method is proposed that uses two one-
axis accelerometers to obtain orders of six degree-of-
freedom vibration components simultaneously. It is proven
theoretically and verified by experimental data that an
accelerometer attached in either the axial or circumfer-
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Figure 1. Three translational and three rotational
vibration components transmitted across a cross-section
of a rigid shaft.

ential directions of a rotating shaft measures three differ-
ent vibration components, and, due to Doppler effects,
orders of each of the vibration components can be retriev-
ed with reasonable accuracy by utilizing the spread of the
orders in a spectrogram.

2. KINEMATIC ANALYSIS

2.1. Definition of Body Coordinate System and Repres-
entation of Angular Motion

A body coordinate system is introduced to formally
describe the three degree-of-freedom rotational motion of
a disk. The body coordinate system used in the present
work is shown in Figure 2. An intermediate coordinate
system x-y-z is obtained by first rotating the global
coordinate system X-Y-Z by angle ¢ about the Z-axis, and
then rotating the resultant coordinate system by angle &
about the x-axis. Finally, the body coordinate system /-2-
3 is obtained by rotating the x-y-z coordinate system

N y
1 S

Figure 2. Global and local body coordinate systems.

about the y-axis by angle w

Consider a rotating shaft whose circular cross-section
lies on the /-3 plane with its center at the origin, and
which rotates about the /-3 normal axis. The angular
velocity of the disk (circular cross-section of the shaft)
can then be represented by the combination of the first
time-derivatives of the three angles: i.e.,

w=¢uz+ E’ux+ vu, , €]

where u;, u,, u, denote unit vectors in the Z-, x-, and 2-
axes, respectively. In Figure 2, it can be seen that unit
vectors are related to others as follows:

u;=u, cos G+u, sinf, 2)
u=uy cosgtu,sing, 3
u.=u, cosytu;siny, 4
u,=u; Cosy—u, siny. &)

The angular velocity of the disk can be represented in
terms of the basis vectors for the global coordinate
system by using the relationship expressed in Equations
(2) to (5), and can be written as:

o=(6cos p—iycos Gsin gyu,
+( 8sin g—ipcos Gcos @) uy+( g+ iysin O)u, . (6)

By differentiating Equation (6) with respect to time, the
angular acceleration of the disk can be easily obtained.
Small amplitude vibration of a rotating shaft, a simpler
form, which carries the assumption that angles ¢ and 8
are negligibly small, is of interest and can be approxi-
mated as:

a~ (0-yPut(iy+ 0p)u+(p+ vO)u,. 0)

By using transform relations represented by Equations
(2) to (5), the angular velocity and acceleration expressed
in the global coordinate system in Equations (6) and (7),
respectively, can easily be transformed to the body
coordinate system.

2.2. Acceleration of a Point on a Rotating Shaft
The acceleration of a point attached to a rigid body can be
represented by the formula:

a=a,taxrtox (@xr), (8)

where r is the position vector of the point from the origin
of the global coordinate system, and a, is the translational
acceleration vector of the global coordinate system that
can be expressed as:

a,=axuxtayuytazuy
= (aycos W—azsiny)u,+au,+(a,sin y+azcos Wu; . (9)

Consider a one-axis accelerometer attached at the coordi-
nates of (7,7,,0) with its axis directed toward the 2-axis
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in the body coordinate system. The acceleration vector of
the point in the body coordinate system can be obtained
by first transforming all the relevant vectors into the body
coordinate system and then evaluating Equation (8).
Since the one-axis accelerometer is assumed to be attach-
ed in a direction parallel with the axis of the rotating
shaft, the only acceleration component of interest is in the
2-axis and can be written as:

a,=aytr, Osin ytr, éfcos 17
+2r, W Boos y—gsiny) —ro( ¢ + F) . (10)

It can be seen in Equation (10) that an accelerometer
attached in the axial direction measures the signal that is
the sum of translational acceleration in the ¥-direction
and Dopplerized signals of the two angular accelerations
about the Z- and Y-axes, as well as products of various
angular velocities.

If a one-axis accelerometer is assumed to be mounted
at the coordinates of (#,,0,0) and directed toward the 3-
axis in the body coordinate system, the signal it measures
can be obtained similarly: i.e.,

a;=aysing+a,cosg-r (i + 09)
+r,( geos yt Bsin y)( Gcos w—gsiny). (11

It can be seen in Equation (11) that a one-axis accelero-
meter attached toward the circumferential direction of a
rotating shaft measures Dopplerized signals of the trans-
lational accelerations in the X- and Z-directions as well as
the signal from the angular acceleration about the 3-axis
(i.e., the axis of the rotating shaft).

The magnitudes of the fourth and fifth terms in
Equation (10) and the fourth term in Equation (11) are
negligibly small compared to the rest of the terms,
provided that the angular displacement of the disk is very
small. This can be deduced from the fact that the ratio of
the square of the first time-derivatives of an angle to the
second time-derivatives of an angle is O(g), where ¢is the
amplitude of the angular displacement in radians.

2.3. Order components of Dopplerized Signals
The first two terms in Equation (11) can be rewritten as:

aysin y+azcos y=Re{(—jaxtaz)exp(jy)} , (12)

where Re{} returns real part of a complex number and j =
J—=1. Orders k, of the acceleration signals ay and a, can
be expressed as:

aX,kzzzRe {AX,k2 @kz } =Ax,k2 @k2+A;(,k2 @-k2 s (13)
aZ,k2=2Re {AZ,kz @kz } =AZ,k2 @k2+A;,k2 @41:2 s (14)

where 4(7) is the complex envelope of order component
k, @(p is the phasor of order &, and ( )" denotes the
complex conjugate. Given an underlying axle speed f{¥)

in terms of frequency in Hertz as a function of time ¢, the
phasor of order £ can be represented as:

Ou(1)=exp(j27k [ fuydu), (15)

where the time integral of the frequency yields the total
angle traveled in radians. With an assumption that the
rotating speed of the shaft is order &, of the underlying
axle speed, Dopplerized signals for the order £, of the
acceleration signals ay and a, can be obtained by sub-
stituting Equations (13) and (14) into right hand side of
Equation (12):

Re{(FAxi, T Az21,) Opie } TRE{ (AR, TA2:,) O i . (16)

Note that the complex envelopes for the order %, of the
translational acceleration signals are modulated by phasors
of orders k,+k, and k,—k,. Since the angular acceleration
signal in Equation (11) will not be order-shifted, order £,
components of signals associated with the translational
acceleration and the signal associated with the angular
acceleration will not lie on the same line, and thus will be
distinguishable, for instance, in the spectrogram of the
signal containing all the order components. The same is
true for the case of the signal expressed in Equation (10),
where orders k, of the signals associated with the two
angular accelerations are order-shifted to orders &,+k; and
k,—k,, while order k, of the signal associated with the
translational acceleration in the Y-direction is not order-

_shifted and remains as order %,.

As can been seen in Equation (16), each order-shifted
term contains two vibration components: the two rotational
accelerations for the case of the accelerometer attached in
the axial direction and the two translational accelerations
for the case of the accelerometer attached in the circum-
ferential direction. The two acceleration components can
be retrieved from the pair of order-shifted complex enve-
lopes: i.e.,

AX,kZZDk2+k1+Dk2—kl » (17)
'AZ,kzzj(Dk2+k|_Dk2—kl) > (18)

where D, is the complex envelope for order k. +k,, and
can be represented as Dy, =(—jAxi,tAzx,)/2 and
Dy, ., is the complex envelope for order k,—k, and can be
represented as D, =(fAxr,tAzi,) /2.

It can be shown that the rest of the terms in Equations
(10) and (11) can be decomposed into a constant signal
and a signal of order 24,. Since those terms contribute not
at all to orders k,—k,, k,, and k,+k,, and are negligible in
magnitude compared to the first three terms as noted in
section 2.2, the three translational and the three rotational
accelerations can in theory be obtained with accuracy by
using the method described in the present work.
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3. SIMULATION

Since no attempt to directly measure the 6 components of
vibration signals simultaneously at a cross section of a
rotating shaft has been made to the authors’ best know-
ledge, an experimental comparison and validation of the
proposed method with a traditional experimental method
is not possible. In this work, therefore, simulated signals
that would have been obtained by the two accelero-
meters, one attached in the axial direction and the other
attached in a circumferential direction of a cross-
sectional disk of a rotating shaft, on a certain empirical
condition, are used to see if the proposed method
successfully retrieves the set of the given six components
of vibration signals.

3.1. Simulated Signals

3.1.1. Simulated vibration signals

For simplicity of simulation, each of the 6 components of
vibration is assumed to result from single degree-of-free-
dom systems. The impulse response of a single degree-
of-freedom system can be represented as:

h(6)=Ae "'sinayt, (19)

where 4 is the amplitude of the impulse response, J'is the
damping ratio, and @, and @, are the natural and damped
natural frequencies, respectively. The parameter sets used
for each vibration component in the simulation are
summarized in Table 1.

The output translational and/or rotational displace-
ments, y(f), can then be calculated by convolving the
corresponding impulse response and the input force x(?):

Y(t)=x(t) x h(t). (20)

In the simulated run-up test, the input force is a linear
combination of sweeping sine functions; a simple case of
constant amplitude B and the sweep ratio 7 is considered
for simplicity of analysis:

x()=Bsin(y") . (1)

The simulated run-up test was performed with the engine
speed varying from 700 to 2200 rpm with a constant
sweep ratio, SRgpy, of 50 rpm/s, and the system is assum-

Table 1. Single degree-of-freedom impulse response
parameters for each vibration component.

translational rotational
components components
X y z x y z

Amor©) 1 1 1 0.0015 0.0012 0.0015
/. (Hz) 65 65 65 60 60 60
g 0.04 0.04 0.04 004 0.04 004

ed to be excited by only the second- and the fourth-order
components. The amplitude of the second-order force
was assumed to be a unit while the amplitude of the
fourth-order force was assumed to be 5 dB less than that
of the second-order force component. The input force
can, therefore, be represented as:

x(£)=B,sin(5)+B,sin(p:1"), (22)

where B, and B, are a unit and 0.3162, respectively, and #
and y are 2x(2m)x50/60 and 4x(27)x50/60, respectively.
The output acceleration can then be obtained by follow-
ing the differentiation rule of convolution:

y'=x"xh. 23)

3.1.2. Dopplerized signals

To measure the six components of vibrations at a cross-
section of a rotating shaft, one accelerometer is attached
facing the axial direction while the other accelerometer is
attached facing the circumferential direction, as described
in section 2 (Figure 3). Since the vibration signals are
measured while the two accelerometers are rotating with
the shaft, some of the vibration signals are Dopplerized.
In the simulated run-up test, the halfshaft is assumed to
rotate at a proportional angular speed with the engine
shaft by a ratio of 0.1444:1. The accelerometer mounted
in the axial direction measures both the translational
component of vibration in the y-direction and the Dop-
plerized rotational components of vibration about the x-
and z-axes, while the accelerometer mounted in the
circumferential direction measures the rotational compo-
nent of vibration about the y-axis and the Dopplerized
translational components of vibration in the x- and z-
directions. The x-axis is in fact defined as the direction of
the accelerometer as it is initially positioned, attached in
the circumferential direction from the origin. The posi-
tions of the two accelerometers in the simulation are
given in Table 2. The simulated signals that would be
measured by the accelerometers attached in the axial and

z z
hg
> |«
V2,
; O ” aa(t)E =
Yo |
alt)

Figure 3. Positions of the accelerometers mounted in the
circumferential and axial directions of a rotating disk.
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Table 2. Position of the two accelerometers.

accelerometer accelerometer
mounted in the mounted in the cir-
axial direction cumferential direction

r (mm) r=18.8 r~23
y (mm) h=10 0
offset angle ¥, (°) 17 0

Time (sec)

100 150 200 250
Frequency (Mz)
Figure 4. Spectrogram of the simulated acceleration
signal for the accelerometer mounted in the axial
direction.

circumferential directions can then be easily evaluated by
substituting the synthesized vibration components calcu-
lated from Equation (23) into Equations (10) and (11),
respectively.

The spectrograms of the simulated signal for the
accelerometers attached in the axial and circumferential
directions are shown in Figures 4 and 5, respectively.
Since the amount of the Doppler shift in order is as small

Time (sec)

0 150 200 250
Frequency (Hz)

Figure 5. Spectrogram of the simulated acceleration signal
for the accelerometer mounted in the circumferential
direction.

as 0.1444, the Dopplerized order components, 1.8556
and 2.1444 orders, are shown to be closely placed to
order 2, as is also the case for the Dopplerized orders of 4
(orders 3.8556 and 4.1444). To accurately retrieve the six
components of vibration signals from the two accelero-
meter signals, it is therefore important to precisely
decouple the close orders of interest.

3.2. Vold-Kalman Order Tracking Filter

The Vold-Kalman order tracking filter extracts phase-
assigned orders or order waveforms as a function of time.
It provides non-phase-biased orders by post-processing
operations. Close orders can be extracted simultaneously
while minimizing the coupling effects, which is one of
the most important advantages over other methods for the
present application. In the Vold-Kalman operations, three
types of filter shapes are provided, which are 1-, 2-, and
3-pole filters. The higher the filter order, the better the
filter selectivity is in the frequency domain. Two- or three-
pole filters are usually preferred to avoid interference
between orders. Readers who are not familiar with the
Vold-Kalman filter are referred to a reference such as
(Gade et al., 1999).

For the operations, not only are the orders to be
simultaneously extracted selected, but also the filter
bandwidths for each order is specified. It is known that
the wider in frequency the filter width, the shorter the
filter response in the time domain, which thereby enables
the filter to follow faster the change in the signal. The
selection of bandwidth is thus a compromise between
having a sufficiently narrow bandwidth to separate the
close order components in the signal and having a
bandwidth wide enough to follow the rapid change in the
signal amplitude especially around a resonance peak. To
ensure an error less than 0.5 dB of the peak amplitude at
the resonance, the minimum filter bandwidth for the
extraction of order & is known to be:

B14e=2/T;4a , (24)

where T4 is the time it takes for the order & to sweep
through the 3-dB bandwidth of the peak, which can be
represented as:

TsdB=Af3dB/(k X SRRPM/6O) ’ (25)

where Afig is the 3-dB bandwidth of a resonance peak,
and can be calculated for a single degree-of-freedom
vibration system as:

Afsw=2¢f,. (26)

In the Vold-Kalman algorithm, either a constant filter
bandwidth or a proportional filter bandwidth can be used.
A proportional filter bandwidth is given as a percentage
of the fundamental order (i.e., the engine speed), and is
recommended for a higher-order analysis or an analysis
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over a relatively wide rpm range. In the present work,
proportional filter bandwidths are used. The minimum
filter bandwidth for a non-Doppler shifted order, such as
order 2, can be obtained straightforwardly by using
Equations (24) to (26). For order 2, the minimum filter
bandwidth that ensures an error less than 5 dB in the
estimate of the peak resonance level is calculated to be
0.641 Hz. ‘A bandwidth of 0.641 Hz for order 2 at the
resonance frequency of 65 Hz corresponds to 1.97%
bandwidth (i.e., 2x0.641/65).

Each of a pair of Doppler-shifted orders contains the
other two vibration components of the three vibration
components that one accelerometer can measure. For
instance, the peak resonances of both the rotational vibr-
ation components about the x- and z-axes are observed in
the order 1.8556 component of the signal measured by
the accelerometer attached in the axial direction. The
filter bandwidth should therefore be calculated based on
the peak resonance that would result in a wider band-
width. Since both the resonances have the same
resonance frequencies and damping ratios in the present
simulation, either resonance of the two vibration compo-
nents can be taken. The time it takes for order 1.8556 to
sweep through the resonance with the sweep ratio of 50
rpm/s can be calculated by substituting the Doppler-
shifted resonance frequency (i.e., 60x1.8556/2) into
Equation (26) and substituting the order 1.8556 into & in
Equation (25). Note that substituting the non-Doppler-
shifted order 2 into Equation (25) and the non-Doppler-
shifted resonance frequency, 60 Hz, into Equation (26)
would yield the same Ty, which is 2.88 sec. The
minimum filter bandwidth at the resonance is then 0.6944
Hz, from Equation (24). A bandwidth of 0.6944 Hz for
order 1.8556 at the Doppler-shifted resonance frequency
(i.e., 60x1.8556/2 Hz) corresponds to 2.31% bandwidth
(i.e., 1.8556x0.6944/60). This also corresponds to the
bandwidth for the non-Doppler-shifted order number 2 at
the non-Doppler-shifted resonance frequency, 60 Hz.

The rest of the minimum proportional filter band-
widths can be obtained similarly. Minimum bandwidths
calculated for each order are given in Table 3. The
magnitude of the phase-assigned orders extracted with a
two-pole Vold-Kalman filter with bandwidths given in
Table 3, and with bandwidths of double, triple, and
quadruple of the bandwidths given in Table 3, are shown
in Figure 6 for the input signal from the accelerometer
attached in the axial direction, and in Figure 7 for the
input signal from the accelerometer attached in the
circumferential direction.

No observable interference between orders (which is
usually observed where orders pass through resonances
of other orders, especially when a low selectivity filter is
used) is seen in both Figures 6 and 7. As the filter
bandwidth increases, however, the estimated magnitude

Table 3. Values of the minimum proportional Vold-Kalman
filter bandwidths obtained by Equation (24) for the
simulation data.

proportional bandwidth (%)

order -
extracted for signal shown in  for signal shown in
Figure 4 Figure 5
2 1.97 2.31
1.8556 2.31 1.97
2.1444 231 1.97
4 7.89 9.26
3.8556 9.26 7.89
4.1444 9.26 7.89
10°

3.85,4.14

Acceleration (m/@)

0 I5 1I0 1{5 2I0 2I5 30
Time (sec)
Figure 6. Magnitude of the phase-assigned orders ex-
tracted from the signal shown in Figure 4, with a two-
pole Vold-Kalman filter with bandwidths in multiples (1,
2, 3, and 4) of those given in Table 3. Indicated numbers
are the corresponding order numbers for each curve.

for higher orders begins to deviate from smooth curves
either near the initial time (Figure 6) or near the end time
(Figure 7), even though the general shapes of the magni-
tude of the extracted phase-assigned orders remains
almost unchanged.

By using the procedure described in section 2.3, the six
components of vibration signals were retrieved from the
phase-assigned orders extracted with bandwidths of
integer multiples up to ten of the minimum bandwidths
given in Table 3. The estimation errors in the resonance
levels are compared for: the sets of bandwidths, the
translational acceleration in the y-direction, and the two
rotational accelerations about the x- and z-axes (Figure
8); and the rotational acceleration about the y-axis, and
the two translational accelerations in the x- and z-
directions (Figure 9). It can be seen in Figures 8 and 9
that, with the minimum filter bandwidths given in Table 3
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1.85,2.14

Acceleration (m/s)

L L L : L

0 5 10 15 20 25 30
Time (sec)

Figure 7. Magnitude of the phase-assigned orders
extracted from the signal shown in Figure 5 with a two-
pole Vold-Kalman filter with bandwidths in multiples (1,
2, 3, and 4) of those given in Table 3. Indicated numbers
are the corresponding order numbers for each curve.

0.05
0+

Po: ]

P
&
)

&

-0.05 r

N4

v
v

-01 ¢
-0.15

Error (dB)

0.2+

-0.25

L L L

1 2 3 4 5 6 7 8 9 10
Proportional bandwidths

Figure 8. Errors in the vibration resonance level estimates
(estimated resonance level minus true resonance level) as
a function of the integer multiples of the filter bandwidths
given by Table 3; second-order (circles) and fourth-order
(right triangles) components of translational vibration in
the y-direction; second-order (squares) and fourth-order
(pentagrams) components of rotational vibration about
the x-axis; and second-order (diamonds) and fourth-order
(left triangles) components of rotational vibration about
the z-axis.

the errors are already less than 0.35 dB. Furthermore,
these errors decrease rapidly as the filter bandwidths
increase and do not decrease much for bandwidths
beyond four times those given in Table 3. In the present
work, bandwidths of double the bandwidths given in
Table 3 are chosen. The six components of vibration
signals retrieved are shown in Figures 10 and 11 based on

0.05

=3
]
&

-0.05 -

Y OeA
gi

-0.1
-0.15

Error (dB)

0.2 §
-0.25 1

-0.3

! ) L L L . '

2 3 4 5 6 7 8 9 10
Proportional bandwidths

Figure 9. Errors in the vibration resonance level estimates
(estimated resonance level minus true resonance level) as
a function of the integer multiples of the filter bandwidths
given by Table 3; second-order (circles) and fourth-order
(right triangles) components of rotational vibration about
the y-axis; second-order (squares) and fourth-order
(pentagrams) components of translational vibration in the
x-direction; and second-order (diamonds) and fourth-
order (left triangles) components of translational
vibration in the z-direction.

x10° @)
& 5¢r ' -
2
0
0 5 10 15 20 25 30
x10° )
< 5 '
€ ”/\___‘
£ I - -
0 5 10 15 20 25 30
x10° ©
a5 ’ ) |
0 5 10 15 20 25 30
Time (sec)

Figure 10. Comparison between the original signals
created by a simulated run-up test and the retrieved
envelopes of the vibration signals obtained by the
procedure described in the present work: (a) for the
translational acceleration in the y-direction; (b) for the
rotational acceleration about the x-axis; (c) for the
rotational acceleration about the z-axis. The envelopes for
the second-order component are denoted by red lines,
while those for the fourth-order component are denoted
by black lines.

the selected bandwidths. The envelopes of the retrieved
vibration signals correspond very accurately with the
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Figure 11. Comparison between the original signals
created by a simulated run-up test and the retrieved
envelopes of the vibration signals obtained by the
procedure described in the present work: (a) for the
rotational acceleration about the y-axis; (b) for the
translational acceleration in the x-axis; (c) for the
translational acceleration about the z-axis. The envelopes
for the second-order component are denoted by red lines,
while those for the fourth-order component are denoted
by black lines.

original vibration signals.

4. APPLICATION TO A HALFSHAFT
VIBRATION MEASUREMENT DATA

To obtain real vibration data from the halfshaft of a front-
wheel drive, 4-cylinder, mid-size sedan, an aluminum
ring adapter was made to attach accelerometers to the
rotating halfshaft (Figure 12). The positions of the
accelerometers in the simulated run-up test shown in
Table 2 are in fact based on the design specifications of
the aluminum ring adapter made in the present work. The
aluminum ring adaptor assembly was attached in roughly
the middle of the left halfshaft of the test vehicle (i.e.,
between the inboard joint and the outboard joint). Data
acquisition from the rotating accelerometers was made
possible by cabling through a slip ring. The vehicle run-
up test was performed on a chassis dynamometer to
simulate a plain road-load condition. The run-up test was
performed with the 2™ gear, when the ratio of the rotating
speed of the halfshaft to the engine speed was 0.1444:1.
The engine speed was increased from approximately
2,500 rpm to 6,000 rpm at a nearly constant sweep ratio
of approximately 313 rpm/s, and was measured by an
engine tachometer as a function of time.

This vehicle run-up test is intended as a preliminary
experiment to obtain real data to use in the de-Doppleri-
zed vibration components retrieval procedure for demon-

Figure 12. An aluminum ring adaptor used for measuring
vibrations of a rotating shaft.

11

10

Time (sec)

0 100 ™ 200 300 400 500
Frequency (Hz) N

Figure 13. Spectrogram of the acceleration signal

measured by the accelerometer attached in the circum-

ferential direction of the aluminum ring adaptor.

stration purposes, while a detailed and full experimental
study on the contribution of halfshaft vibration compo-
nents to vehicle interior noise is left as future work. In the
present work, the procedure for obtaining the correspond-
ing three vibration components associated with the
acceleration signal measured in the circumferential direc-
tion is demonstrated. The other set of three vibration
components from the signal measured in the axial
direction of the halfshaft can be in fact independently
obtained using an identical procedure.

A spectrogram of the acceleration signal obtained by
the accelerometer attached in the circumferential direc-
tion of the aluminum ring adaptor during the run-up test
is shown in Figure 13. For a 4-cylinder engine, the main
firing orders are 2™ order and its inter multiples. By
closely inspecting the spectrogram shown in Figure 13
and a spectrogram of the interior noise of the vehicle
during the run-up test, orders 2, 3.5, and 4 are considered
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Table 4. Values of the proportional bandwidths used in
the Vold-Kalman operations for data obtained from experi-
ment.

Order extracted Proportional bandwidth (%)

2 32
1.8556 2.6
2.1444 2.6

3.5 9.85
3.3556 7.98
3.6444 7.98

4 12.86
3.8556 10.42
4.1444 10.42

to be main contributors to the interior noise. To calculate
the bandwidths for the Vold-Kalman filter based on the
procedure described in section 3.2, resonance frequencies
of 200 Hz for the two translational vibration components
and 180 Hz for the rotational vibration component were
estimated based on the observation in Figure 13; a light
damping ratio of 0.04 was assumed for all three vibration
components. The three orders of interest and their Dop-
plerized pairs of orders, as well as the bandwidths used in
the Vold-Kalman operations, are given in Table 4. The
bandwidths specified in Table 4 are double the minimum
bandwidths calculated by Equation (24).

The nine orders of interest were simultaneously ex-
tracted using the Vold-Kalman operations with a two-
pole filter, and the magnitude of the extracted orders are
shown in Figure 14. In Figure 15, the original signal and
the sum of the extracted orders are compared. It can be

10°

Acceleration (m/s)

Time (sec)

Figure 14. Magnitude of the phase-assigned orders
extracted from the signal shown in Figure 13, with a two-
pole Vold-Kalman filter with bandwidths given in Table
4. Indicated numbers are the corresponding order numbers
for each curve.
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Figure 15. Comparison between (a) the signal shown in
Figure 13 and (b) the sum of the order components
extracted by Vold-Kalman operations.

seen that the sum of the major orders selected in the Vold-
Kalman operations represents the characteristics of the
original signal fairly well.

The rotational (or torsional, in this case) vibration
components can be obtained directly from non-Doppleri-
zed order components among the extracted orders (i.e.,
orders 2, 3.5 and 4). The magnitude of the phase-assigned
orders for the rotational acceleration components are
shown in Figure 16. The magnitude of the de-Doppleri-
zed phase-assigned order for the two translational vibra-
tion components are shown in Figures 17 and 18. Inter-
estingly, a beat phenomenon can be observed in the
retrieved signal for the two translational vibrations. This
beat occurs because the principal axis of the translational
(or radial in this case) vibration rotates as a function of

Acceleration (m/sz)

Time (sec)

Figure 16. The envelopes obtained for the rotational
acceleration about the y-axis. Indicated numbers are
corresponding order numbers for each curve: order 2 (red
line), order 3.5 (black line), and order 4 (blue line).
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Acceleration (/&)

Time (sec)

Figure 17. The envelopes of order components for the
translational acceleration in the x-direction obtained by
the procedure described in the present work. Indicated
numbers are corresponding order numbers for each
curve: order 2 (red line), order 3.5 (black line), and order
4 (blue line).
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Figure 18. The envelopes of order components for the
translational acceleration in the z-direction obtained by
the procedure described in the present work. Indicated
numbers are corresponding order numbers for each
curve: order 2 (red line), order 3.5 (black line), and order
4 (blue line).

time. This can be verified by evaluating the magnitude of
the total translational acceleration as a function of time as
shown in Figure 19. Unlike the magnitude of each com-
ponent of the translational acceleration, the total magni-
tude of the translational acceleration changes smoothly as
a function of time. The mechanism that results in the
slow rotation of the principal axis of the translational
acceleration is unknown, but the period of the rotation is
observed to be approximately 0.6 sec, and remained
almost unchanged during the run-up test.

Acceleration (m/&)

4 6 g 10
Time (sec)

o
-

Figure 19. The envelopes of the total translational
acceleration in a radial direction. Solid lines represent the
total radial components, while dashed lines represent the
radial components in the x- and z-directions shown in
Figures 17 and 18, respectively. Indicated numbers are
corresponding order numbers for each curve: order 2 (red
line), order 3.5 (black line), and order 4 (blue line).

5. CONCLUSION

A new measurement method is proposed in the present
work to enable order analysis of the six degree-of-free-
dom vibration components of a rotating shaft with only
two accelerometers. This measurement method utilizes
the spread of different vibration components in the
spectrogram due to the Doppler effect. For a typical mid-
size sedan operating in 2™ gear, the order shift of
Dopplerized vibration components was approximately
0.1444. It was shown that these close orders can be
resolved without much interference by using fine-order-
resolution Vold-Kalman operations. The measurement
method was applied to an order analysis of vibration
components for a left halfshaft of a mid-size sedan. The
preliminary results shows that the measurement and
analysis method proposed in the present work can be a
useful tool for order analysis of a rotating shaft.
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