DOI QR코드

DOI QR Code

Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-Pot Synthesis

One-Pot 합성공정으로 만든 Aluminum이 doping된 폴리카보실란으로부터 제조된 치밀한 결정화 탄화규소 섬유

  • Shin, Dong-Geun (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Kong, Eun-Bae (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Riu, Doh-Hyung (Nano Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Kim, Young-Hee (Eco Materials Team, KICET (Korea Institute of Ceramic Engineering and Technology)) ;
  • Park, Hong-Sik (DACC Co. Ltd) ;
  • Kim, Hyoun-Ee (School of Materials Science Engineering, Seoul National University)
  • 신동근 (요업(세라믹)기술원 나노소재팀) ;
  • 공은배 (요업(세라믹)기술원 나노소재팀) ;
  • 류도형 (요업(세라믹)기술원 나노소재팀) ;
  • 김영희 (요업(세라믹)기술원 환경재료팀) ;
  • 박홍식 (주식회사 데크) ;
  • 김현이 (서울대학교 재료공학부)
  • Published : 2007.07.31

Abstract

Polyaluminocarbosilane was synthesized by direct reaction of polydimethylsilane with aluminum(III)-acetylacetonate in the presence of zeolite catalyst. A fraction of higher molecular weight polycarbosilane was formed due to the binding of aluminium acetylacetonate radicals with the polycarbosilane backbone. Small amount of Si-O-Si bond was observed in the as-prepared polyaluminocarbosilane as the result. Polyaluminocarbosilane fiber was obtained through a melt spinning and was pyrolyzed and sintered into SiC fiber from $1200{\sim}2000^{\circ}C$ under a controlled atmosphere. The nucleation and growth of ${\beta}-SiC$ grains between $1400{\sim}1600^{\circ}C$ are accompanied with nano pores formation and residual carbon generation. Above $1800^{\circ}C$, SiC fiber could be sintered to give a fully crystallized ${\beta}-SiC$ with some ${\alpha}-SiC$.

Keywords

References

  1. S. Prochazka, 'The Role of Boron and Carbon in the Sintering of Silicon Carbide,' in 'Special Ceramics 6' British Ceram. Research Association, 171-81 (1975)
  2. H. Suzuki and T. Hase, 'Boron Transport and Change of Lattice Parameter during Sintering of $\beta-SiC$,' J. Am. Ceram. Soc., 63 [5-6] 349-50 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10741.x
  3. W. Bocker, H. Landfermann, and H. Hausner, 'Sintering of $\alpha-SiC$ with Additions of Aluminum,' Powder metall. Int., 10 [2] 87-9 (1978)
  4. S. Prochazka and R. M. Scanlan, 'Effect of Boron and Carbon on Sintering of SiC,' J. Am. Ceram. Soc., 58 [1-2] 72 (1975) https://doi.org/10.1111/j.1151-2916.1975.tb18990.x
  5. M. A. Mulla and V. D. Krastic, 'Pressureless Sintering of $\beta-SiC$ with $Al_2O_3$ Additions,' J. Mater. Sci., 29 5321-26 (1994) https://doi.org/10.1007/BF01171542
  6. K. Negita, 'Effective Sintering Aids for Silicon Carbide Ceramics Reactivities of Silicon Carbide with Various Additves,' J. Am. Ceram. Soc., 69 [13] C308-10 (1986)
  7. D. Foster and D. P. Tompson, 'The Use of MgO as a Densification Aid for $\alpha-SiC$,' J. Euro. Ceram. Soc., 19 2823-31 (1999) https://doi.org/10.1016/S0955-2219(99)00060-6
  8. J. K. Lee, H. Tanaka, and H. Kim, 'Formation of Solidsolutions between SiC and AlN during Liquid-phase Sintering,' Mater. Lett., 29 1-6 (1996) https://doi.org/10.1016/S0167-577X(96)00110-3
  9. S. Honda, T. Nagano, K. Kaneko, and H. Kodama, 'Compressive Deformation Behavior of Al-doped ${\beta}-SiC$ at Elevated Temperature,' J. Euro. Ceram. Soc., 22 979-85 (2002) https://doi.org/10.1016/S0955-2219(01)00406-X
  10. R. A. Alliegro, L. B. Coffin, and J. R. Tinklepaugh, 'Pressure- Sintered Silicon Carbide,' J. Am. Ceram. Soc., 39 386- 89 (1956) https://doi.org/10.1111/j.1151-2916.1956.tb15609.x
  11. A. K. Samanta, K. K. Dhargupta, and S. Ghatak, 'Decom- Position Reactions in the SiC-Al-Y-O System during Gas Pressure Sintering,' Ceram, Int., 27 123-33 (2001) https://doi.org/10.1016/S0272-8842(00)00050-X
  12. W. J. Moberlychan, J. J. Cao, and L. C. De Jonghe, 'The Roles of Amorphous Grain Boundaries and the ${\beta}-{\alpha}$Transformation in Toughening SiC,' Acta. Mater., 46 [5] 1625-35 (1998) https://doi.org/10.1016/S1359-6454(97)00343-1
  13. H. J. Choi, Y. W. Kim, M. Mitomo, T. Nishimura, J. H. Lee, and D. Y. Kim, 'Intergranular Glassy Phase Free SiC Ceramics Retains Strength at $1500^{\circ}C$,' Scripta Mater., 50 1203-07 (2004) https://doi.org/10.1016/j.scriptamat.2004.02.008
  14. A. R. Bunsell and M. H. Berger, 'Fine Diameter Ceramic Fibers,' J. Europ. Ceram. Soc., 20 284-87 (1995)
  15. T. Ishikawa, Y. Kohtoku, K. Kumagawa, T. Yamamura, and T. Nagasawa, 'High-Strength Alkali-Resistant Sintered SiC Fiber Stable to $2,200^{\circ}C$,' Nature, 391 773-75 (1998) https://doi.org/10.1038/35820
  16. T. Ishikawa, 'Advances in Inorganic Fibers,' Adv. Polym. Sci., 178 109-44 (2005) https://doi.org/10.1007/b104208
  17. D. C. Deleeuw, J. Lipowitz, and P. P. Lu, 'Preparation of Substantially Polycrystalline Silicon Carbide Fibers from Polycarbosilane,' US Patent No. 5,071,600 (1991)
  18. T. Ishikawa, Y. Harada, Y. Inoue, and H. Yamaoka, 'Silicon Caribde Fiber Having Excellent Alkali Durability,' US patent No. 5,945,362 (1999)
  19. F. Cao, D. P. Kim, X. D. Li, C. X. Feng, and Y. C. Song, 'Synthesis of Polyaluminocarbosilane and Reaction Mechanism Study,' J. Appl. Polym. Sci., 85 2787-92 (2002) https://doi.org/10.1002/app.10781
  20. D. F. Zhao, X. D. Li, C. M. Zhen, and T. J. Hu, 'Production Mechanism of Polyaluminocarbosilane using Aluminum Acetylacetonate with Polysilacarbosilane,' J. Univ. Sci, Tech. Beijing, 29 [2] 130-34 (2007)
  21. D. H. Riu, S. G. Shin, Y. Kim, Y. K. Jeong, H. S. Park, and H. E. Kim, 'Fabrication of Nanocrystalline Al-doped Silicon Carbide Fiber and its Practical Uses,' Proceedings of International Fiber Conference 2006, Extreme &Asethetic Textiles, A3-12 103-04 (2006)
  22. T. Ohnaka, 'Industrial Scale Fabrication and Application of Polysilane,' in Development of Organosilicon Polymers, Ed. by H. Sakurai, CMC, Tokyo, 99-114 (1999)
  23. D. H. Riu, Y. Kim, D. G. Shin, and H. R. Kim, 'Characterization of SiC Fiber Derived from Polycarbosilane,' Ceramic Trans., 154 77-86 (2003)
  24. D. H. Riu, Y. Kim, D. G. Shin, H. S. Park, D. W. Lim, and C. S. Yoon, 'Manufacturing Method of Metal Doped Polycarbosilane and Manufacturing Methed of Nano-Crystallized Silicon Carbide Fiber Comprising the Same,' Korean patent No. 10-0684649
  25. D. G. Shin, D. H. Riu, Y. Kim, H. R. Kim, H. S. Park, and H. E. Kim, 'Characterization of SiC Fiber Derived from Polycarbosilanes with Controlled Molecular Weight(in Korean),' J. Kor. Ceram. Soc., 42 [8] 593-98 (2005) https://doi.org/10.4191/KCERS.2005.42.8.593
  26. H. Q. Ly, R. Taylor, R. J. Day, and F. Heatley, 'Conversion of Polycarbosilane (PCS) to SiC-Based Ceramic Part II. Pyrolysis and Characterization,' J. Nucl. Mater., 231 245-48 (1996) https://doi.org/10.1016/0022-3115(96)00387-X
  27. S. Yajima, Y. Hasegawa, J. Hayashi, and M. Iimura, 'Synthesis of Continuous Silicon Carbide Fibre with High Tensile Strength and High Young's Modulus,' J. Mater. Sci., 13 2569-76 (1978) https://doi.org/10.1007/BF02402743
  28. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, M. Monthioux, and A. Oberlin, 'Conversion Mechanism of a Polycarbosilane Precursor into an SiC-Based Ceramic Material,' J. Mater. Sci., 26 1333-45 (1991) https://doi.org/10.1007/BF00544474
  29. G. Chollon, M. Czerniak, R. Pailler, X. Bourrat, R. Naslain, J. P. Pillot, and R. Cannet, 'A Model SiC-Based Fiber with a Low Oxygen Content Prepared from a Polycarbosilane Precursor,' J. Mater. Sci., 32 893-911 (1997) https://doi.org/10.1023/A:1018597432067
  30. T. Shimoo, Y. Katase, K. Okamura, and W. Takano, 'Carbon Elimination by Heat-Treatment in Hydrogen and Its Effect on Thermal Stability of Polycarbosilane-Derived Silicon Carbide Fibers,' J. Mater. Sci., 39 6243-51 (2004) https://doi.org/10.1023/B:JMSC.0000043593.01160.da
  31. K. Itatani, T. Tanaka, H. Suemasu, A. Nozue, and I. J. Davies, 'Fabrication and Fracture Behavior of Silicon Carbide Composites Containing Chopped Tyranno Si-Al-C Fiber,' J. Australasian Ceram. Soc., 41 [1] 1-7 (2005)
  32. F. Cao, X. D. Li, P. Peng, C. X. Feng. J. Wang, and D. P. Kim, 'Structure Evolution and Associated Properties on Conversion from Si-C-O-Al Ceramic Fibers to Si-C-Al Fibers by Sintering,' J. Mater. Chem., 12 606-10 (2002) https://doi.org/10.1039/b106868g
  33. M. Takeda, A. Saeki, J. I. Sakamoto, Y. Imai, and H. Ichikawa, 'Effect of Hydrogen Atmosphere on Pyrolysis of Cured Polycarbosilane Fibers,' J. Am. Ceram. Soc., 83 [5] 1063-69 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01331.x
  34. T. F. Cooke, 'Inorganic Fibers-A Literature Review,' J. Am. Ceram. Soc., 74 [12] 2959-78 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb04289.x

Cited by

  1. Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane vol.50, pp.4, 2013, https://doi.org/10.4191/kcers.2013.50.4.301
  2. Iodine diffusion during iodine-vapor curing and its effects on the morphology of polycarbosilane/silicon carbide fibers vol.132, pp.47, 2015, https://doi.org/10.1002/app.42687
  3. Fabrication of Cu-30 vol% SiC Composites by Pressureless Sintering of Polycarbosilane Coated SiC and Cu Powder Mixtures vol.26, pp.6, 2016, https://doi.org/10.3740/MRSK.2016.26.6.337
  4. Structural Evolution of Silicon Carbide Phase from the Polycarbosilane Cured with Iodine: NMR Study vol.28, pp.6, 2018, https://doi.org/10.1007/s10904-018-0878-8