Geoscientific land management planning in salt-affected areas*

염기화된 지역에서의 지구과학적 토지 관리 계획

  • Abbott, Simon (CRC LEME, Department of Exploration Geophysics, Curtin University of Technology) ;
  • Chadwick, David (The Meadows) ;
  • Street, Greg (Department of Exploration Geophysics, Curtin University of Technology)
  • Published : 2007.02.28

Abstract

Over the last twenty years, farmers in Western Australia have begun to change land management practices to minimise the effects of salinity to agricultural land. A farm plan is often used as a guide to implement changes. Most plans are based on minimal data and an understanding of only surface water flow. Thus farm plans do not effectively address the processes that lead to land salinisation. A project at Broomehill in the south-west of Western Australia applied an approach using a large suite of geospatial data that measured surface and subsurface characteristics of the regolith. In addition, other data were acquired, such as information about the climate and the agricultural history. Fundamental to the approach was the collection of airborne geophysical data over the study area. This included radiometric data reflecting soils, magnetic data reflecting bedrock geology, and SALTMAP electromagnetic data reflecting regolith thickness and conductivity. When interpreted, these datasets added paddock-scale information of geology and hydrogeology to the other datasets, in order to make on-farm and in-paddock decisions relating directly to the mechanisms driving the salinising process. The location and design of surface-water management structures such as grade banks and seepage interceptor banks was significantly influenced by the information derived from the airborne geophysical data. To evaluate the effectiveness ofthis planning., one whole-farm plan has been monitored by the Department of Agriculture and the farmer since 1996. The implemented plan shows a positive cost-benefit ratio, and the farm is now in the top 5% of farms in its regional productivity benchmarking group. The main influence of the airborne geophysical data on the farm plan was on the location of earthworks and revegetation proposals. There had to be a hydrological or hydrogeological justification, based on the site-specific data, for any infrastructure proposal. This approach reduced the spatial density of proposed works compared to other farm plans not guided by site-specific hydrogeological information.

지난 20 년 동안, 서부 오스트레일리아 농부들은 염분이 농토에 마치는 영향을 최소화하기 위해 토지경영방법들에 변화를 주기 시작했다. 농지 계획은 자주 농기구 변화의 지침서로 활용되어 왔으나, 이제까지의 대부분의 계획들은 지표수의 흐름과 최소한의 자료에 기초하여 세워져 왔다 따라서 농지 계획은 토지의 염기화를 야기하는 과정을 효과적으로 설명해 주지 못하였다. 서부 오스트레일리아 남서쪽에 위치하는 Broomhill에서 수행된 연구과제에서는 표토층의 지표와 지표하부의 특성을 측정하여 얻은 일련의 대규모 지질학적 자료를 이용하는 접근방법을 시도 하였다. 또한 기후나 농업의 역사 등과 같은 다른 자료들도 연구 되었다. 이 접근법의 근간은 전 연구지역에 대한 항공지구물리 자료의 획득에 있다. 이 방법은 토양의 특성을 반영하는 방사선탐사자료, 기반암의 지질을 반영하는 자력탐사자료, 그리고 표토의 두께와 전기전도도를 반영하는 SALTMAP 전자기탐사자료를 포함한다. 해석 단계에 있어서, 이러한 자료들에는 지질학과 수리지질학적인 목장규모 (paddock-scale) 의 정보가 추가되게 되는데 이는 염기화 과정을 유도하는 메커니즘과 직접적인 연관이 있는 농장이나 목장에서의 결정을 내리기 위함이다. 항공지구물리 탐사자료로부터 얻어진 정보들은 농수로나 누수차단댐 등과 같은 지표수 관리를 위한 구조물들의 설계 및 위치 선정에 중요한 영향을 주었다. 이러한 계획의 효과를 평가하기 위하여 1996 년부터 농업농민부는 한 농장 전체에서 수행된 계획을 모니터링 해왔다. 실행된 계획은 긍정적인 비용-이익비를 보여 주었으며, 이 농장은 현재 지역생산 벤치마킹 단체 중 상위 5% 내에 드는 성과를 보였다. 항공지구물리 자료는 토목공사의 위치 선정이나 다시 식물은 재배하기 위한 제안서 작성에 중요한 영향을 미친다. 현장특성에 맞는 수리학적 또는 수리지질학적 검토는 사회간접자본 건설을 위한 어떠한 계획안을 세우더라도 필수 불가결한 요소이다. 이 연구에서 제안한 접근법은 현장 특성에 기초한 수리지질학적 정보에 기인하지 않은 농지 계획법들에 비해 제안된 작업들의 공간적인 밀도를 줄일 수 있는 방법이라 하겠다.

Keywords

References

  1. Abbott, S., 2003, The effectiveness of salinity management plans is dependent on quality hydrological information only available through the inclusion of geophysical data in a minimum suite of data sets used for landscape interpretation and planning: M.Sc. Thesis, University of Western Australia
  2. Anderson, S., Street, G. J., and Anderson, H., 1995, The use of airborne geophysics to understand salinity processes and develop a farm plan on a farm in the south west of Western Australia: 4th National Conference on the Productive Use of Saline Lands, Albany
  3. Anderson-Mayes, A. M., 1997, Harnessing spatial analysis with GIS to improve interpretation of airborne geophysical data: Proceedings of the Second Annual Conference of GeoComputation 1997 & SIRC 1997, Dunedin, 199-208
  4. Chamarette, J., and Robinson, S., 1999, Decreasing Bank Density andWidth Increases Landcare Profitability: Proceedings of Bankwest Landcare Conference, Esperance
  5. Engel, R., McFarlane, D. G., Street, and G. J., 1987, The influence of dolerite dykes on saline seeps in south Western Australia: Australian Journal of Soil Research 25, 125-136. doi: 10.1071/SR9870125
  6. Gardner, W. K., 1989, Coping with waterlogging in the high rainfall zones of southern Australia: 5th Australian Agronomy Conference, Australian Society of Agronomy, Melbourne
  7. George, R. J., 1990, The nature and management of saprolite aquifers in the wheatbelt of Western Australia: Land Degradation and Rehabilitation 2, 261-275. doi: 10.1002/ldr.3400020403
  8. George, R. J., and Smith, R. A., 1998, Broomehill '96 The application of SALTMAP at Broomehill for land management: Hydrogeology Report HR83, Water and Rivers Commission
  9. Hawke, R. J. L., 1989, Announcement of One Billion Trees Program: The Age, July 20
  10. Johnston, C. D., Hurle, D. H., Hudson, D. R., and Height, M. I., 1983, Water movement through preferred paths through lateritic profiles in the Darling Range, Western Australia: CSIRO Groundwater Research, 1
  11. Keen, M. G., 2001, Field pocket book of conservation earthworks, formulae and tables: Department of Agriculture, Western Australia
  12. Leonhard,E. L., 1996, Broomehill 1996 Investigative Core Drilling Program, Borehole Completion Report: Hydrogeology Report HR63. Water and Rivers Commission
  13. Leonhard, E. L., 1999, An evaluation of the 1993 Broomehill Saltmap AEM survey: Hydrogeology Report HR64, Water and Rivers Commission
  14. Nulsen, R. A., Beeston, G., Smith, R., and Street, G. J., 1996, Delivering a Technically Sound Basis for Catchment and Farm Planning: WALIS Forum, Perth, Western Australia
  15. O'Brien, B. J., 1998, Overview of Broomehill '96 and Saltmap: Water and Rivers Commission
  16. Raper, G. P., and Guppy, L. M., 2003, Predicting the effectiveness of farm planning at the Byenup Hill catchment using a groundwater model: Department of Agriculture, Western Australia
  17. Robinson, B., Rees, D., and Abbott, S., 1996, A consultancy for the identification of the factors affecting the implementation of farm plans from a private consultant's perspective: Department of Agriculture, Western Australia
  18. Spies, B., 2001, Australian developments in airborne electromagnetics - from minerals to dryland salinity: ATSE Focus
  19. Spies, B., and Woodgate, P., 2005, Salinity Mapping Methods in the Australian Context - Results of a review facilitated by the Academy of Science and the Academy of Technological Sciences for the Natural Resource Management Ministerial Council through Land and Water Australia and the National Dryland Salinity Program: Department of Environment and Heritage and Agriculture, Fisheries, and Forestry
  20. Street, G. J., 1992a, Airborne geophysical surveys: applications in land management Exploration Geophysics 23, 333-337 https://doi.org/10.1071/EG992333
  21. Street, G. J., 1992b, Airborne geophysics - A tool to identify strategic area for revegetation: Catchments of Green: Greening Australia Ltd
  22. Street, G. J., Abbott, S., Ladyman, M., and Anderson-Mayes, A.-M., 2006, Interpretation of geophysics for land management planning, Broomehill, Western Australia. Exploration Geophysics 37, 379-388 https://doi.org/10.1071/EG06379
  23. World Geoscience Corporation, 1996, Broomehill SALTMAP project - salt hazards: World Geoscience Corporation, internal report
  24. World Geoscience Corporation and Read, V., 1992, QUESTEM airborne salinity survey, Boscobel catchment, Western Australia: World Geoscience Corporation