INVERTIBLE INTERPOLATION ON AX = Y IN ALG \mathcal{L}

Joo Ho Kang

ABSTRACT. Given operators X and Y acting on a Hilbert space \mathcal{H} , an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$, for $i = 1, 2, \cdots, n$. In this article, we showed the following: Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Then the following are equivalent:

(1)
$$\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty, \quad \sup \left\{ \frac{\|Xf\|}{\|Yf\|} : f \in \mathcal{H} \right\} < \infty$$
 and $\overline{range} \ \overline{X} = \mathcal{H} = \overline{range} \ Y.$

(2) There exists an invertible operator A in $Alg\mathcal{L}$ such that AX = Y.

1. Introduction and Preliminaries

One form of interpolation problems in operator algebras is the following: Given operators X and Y on a Hilbert space \mathcal{H} and an operator algebra \mathcal{A} on \mathcal{H} , when does there exist an operator A in \mathcal{A} such that AX = Y? Interpolation problems have been investigated in several operator algebras by many mathematicians. The author has studied interpolation problems in $Alg\mathcal{L}$ and tridiagonal algebras.

The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [6]. In the case of nest algebra \mathcal{U} , the (one-vector) interpolation problem was solved by Lance [7]: his result was extended by Hopenwasser [2] to the case that \mathcal{U} is a CSL-algebra. Munch[8] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser [3] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra.

Jo-Kang-Park obtained a necessary and sufficient condition for the existence of an interpolating operator that is in $Alg\mathcal{L}$ in [4]. In this paper we showed when there exists an invertible interpolating operator in $Alg\mathcal{L}$ from the previous results.

Received by the editors November 7, 2006 and, in revised form, June 7, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 47L35.

Key words and phrases. invertible interpolation problem, subspace lattice, Alg L.

This paper was supported by Daegu University Geant (2006).

A subspace lattice \mathcal{L} is a strongly closed lattice of projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. The symbol $\mathrm{Alg}\mathcal{L}$ is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} means the orthogonal complement of \overline{M} . Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers.

2. Results

Let \mathcal{H} be a Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the algebra of all bounded operators acting on \mathcal{H} . Let \mathcal{L} be a subspace lattice (i.e. a complete lattice of orthogonal projections which contains 0 and I) on \mathcal{H} . Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} which leave invariant each projection E in \mathcal{L} . Assume that X and Y are operators in $\mathcal{B}(\mathcal{H})$ and A is an operator in Alg \mathcal{L} such that AX = Y. Then $\|E^{\perp}Yf\| = \|E^{\perp}AXf\| = \|E^{\perp}AE^{\perp}Xf\| \le \|A\|\|E^{\perp}Xf\|$, for all $E \in \mathcal{L}$. If, for convenience, we adopt the convention that a fraction whose numerator and denominator are both zero is equal to zero, then the inequalities above may be stated in the form

$$\sup_{E\in\mathcal{L}}\frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|}\leq\|A\|<\infty.$$

In [4], we showed that the above fact is a necessary and sufficient condition for existence of an interpolating operator in $Alg\mathcal{L}$.

Theorem A ([4]). Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto \overline{rangeX} . If PE = EP for each $E \in \mathcal{L}$, then the following statements are equivalent:

(1) There exists an operator A in $Alg\mathcal{L}$ such that AX = Y.

(2)
$$\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty.$$

Moreover, if condition (2) holds, then we may choose an operator A such that ||A|| = K.

Theorem B ([1]). Let X and Y be bounded operators acting on a Hilbert space \mathcal{H} . Then the following statements are equivalent:

- (1) $rangeY^* \subseteq range X^*$
- (2) $Y^*Y \leq \lambda^2 X^*X$ for some $\lambda \geq 0$
- (3) there exists a bounded operator A on \mathcal{H} so that AX = Y.

Moreover, if (1), (2) and (3) are valid, then there exists a unique operator A so that

- (a) $||A||^2 = \inf\{\mu : Y^*Y \le \mu X^*X\}$
- (b) $kerY^* = kerA^*$ and
- (c) $rangeA^* \subseteq \overline{rangeX}$.

Now, we investigate invertible interpolation problems in $Alg \mathcal{L}$.

Lemma 2.1. Let A, X and Y be operators in $\mathcal{B}(\mathcal{H})$. If Y = AX and $A|_{range\ X^{\perp}} = 0$, then $Ker\ A^* = Ker\ Y^*$.

Proof. Let f be a vector in Ker A^* . Then $A^*f = 0$. So $X^*A^*f = 0$. Hence $Y^*f = 0$ and f is in Ker Y^* .

Conversely, if f is in Ker Y^* , then for any g in \mathcal{H} ,

$$< f, Ag > = < A^*f, g >$$
 $= < A^*f, Xg_1 + g_2 > \text{ for some } g_1 \in \mathcal{H} \text{ and } g_2 \in \overline{range X}^{\perp}$
 $= < A^*f, Xg_1 > + < A^*f, g_2 >$
 $= < f, AXg_1 > + < f, Ag_2 >$
 $= < f, Yg_1 > + 0 = 0.$

Hence $f \in \overline{range A}^{\perp} (= \text{Ker } A^*)$.

Theorem 2.2. Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Then the following assertions are equivalent:

(1)
$$\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty, \sup \left\{ \frac{\|Xf\|}{\|Yf\|} : f \in \mathcal{H} \right\} < \infty$$

$$and \frac{1}{range} = \mathcal{H} = range Y.$$

(2) There exists an invertible operator A in $Alg\mathcal{L}$ such that AX = Y.

Proof. Assume that

$$\sup\left\{\frac{\|E^\perp Yf\|}{\|E^\perp Xf\|}: f\in\mathcal{H},\ E\in\mathcal{L}\right\}<\infty\ \text{and}\ \sup\left\{\frac{\|Xf\|}{\|Yf\|}: f\in\mathcal{H}\right\}<\infty.$$

Let P be the projection onto \overline{rangeX} . Since $\overline{rangeX} = \mathcal{H}$, P = I. Hence PE = EP for all E in \mathcal{L} . So there exist operators A in Alg \mathcal{L} and B in $\mathcal{B}(\mathcal{H})$ such that

AX = Y and BY = X by Theorem A and Theorem B. So X = BY = BAX and Y = AX = ABY. Since $\overline{range\ X} = \mathcal{H} = \overline{range\ Y}$, AB = I = BA. Hence A is invertible.

Conversely, if there exists an operator A in $Alg\mathcal{L}$ such that AX = Y and AB = I = BA for some bounded operator B, then X = BY.

Hence

$$\sup \left\{ \frac{\|E^{\perp}Yf\|}{\|E^{\perp}Xf\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty$$

and

$$\sup \left\{ \frac{\|Xf\|}{\|Yf\|} : f \in \mathcal{H} \right\} < \infty.$$

Since A and B are onto, $\operatorname{Ker} A^* = \operatorname{Ker} Y^*$ and $\operatorname{Ker} B^* = \operatorname{Ker} X^*$, $\overline{range} Y^{\perp} = 0 = \overline{range} X^{\perp}$ by Lemma 2.1. Hence X and Y have dense ranges in \mathcal{H} .

Theorem 2.3. Let \mathcal{L} be a subspace lattice acting on a Hilbert space \mathcal{H} and let X_i and Y_i be operators in $\mathcal{B}(\mathcal{H})$ for $i = 1, 2, \dots, n$. Then the following assertions are equivalent:

(1)
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_{i} f_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n} X_{i} f_{i})\|} : f_{i} \in \mathcal{H}, E \in \mathcal{L} \right\} < \infty,$$
$$\sup \left\{ \frac{\|\sum_{i=1}^{n} X_{i} f_{i}\|}{\|\sum_{i=1}^{n} Y_{i} f_{i}\|} : f_{i} \in \mathcal{H} \right\} < \infty$$

and $\overline{range\ X_k} = \mathcal{H} = \overline{range\ Y_k}$ for some k in $\{1, 2, \cdots, n\}$.

(2) There exists an invertible operator A in AlgL such that $AX_i = Y_i$ for $i = 1, 2, \dots, n$.

Proof. Assume that

$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} < \infty$$

and

$$\sup \left\{ \frac{\|\sum_{i=1}^n X_i f_i\|}{\|\sum_{i=1}^n Y_i f_i\|} : f_i \in \mathcal{H} \right\} < \infty.$$

Let P_k be the projection onto $\overline{rangeX_k}$ for given k. Since $\overline{rangeX_k} = \mathcal{H}$, $P_k = I$. Hence $P_kE = EP_k$, for all E in \mathcal{L} . So there exist operators A in $Alg\mathcal{L}$ and B in $\mathcal{B}(\mathcal{H})$ such that $AX_i = Y_i$ and $BY_i = X_i$ for $i = 1, 2, \dots, n$ by Theorem 2.2[4]. So $X_i = BY_i = BAX_i$ and $Y_i = AX_i = ABY_i$. Since $\overline{range\ X_k} = \mathcal{H} = \overline{range\ Y_k}$ for some $k = 1, 2, \dots, n$, AB = I = BA. Hence A is invertible.

Conversely, if there exists an operator A in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \dots, n$ and AB = I = BA for some bounded operator B, then $X_i = BY_i$ for all $i = 1, 2, \dots, n$. Hence

$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} < \infty$$

and

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} X_i f_i\|}{\|\sum_{i=1}^{n} Y_i f_i\|} : f_i \in \mathcal{H} \right\} < \infty.$$

By Lemma 2.1, $\operatorname{Ker} A^* = \operatorname{Ker} Y_i^*$ and $\operatorname{Ker} B^* = \operatorname{Ker} X_i^*$. Since A and B are onto, $\overline{range} \ Y_i^{\perp} = 0 = \overline{range} \ X_i^{\perp}$. Hence X_i and Y_i have dense ranges in \mathcal{H} for all $i = 1, 2, \dots, n$.

Theorem 2.4. Let \mathcal{L} be a subspace lattice acting on a Hilbert space \mathcal{H} and let X_i and Y_i be operators in $\mathcal{B}(\mathcal{H})$ for $i = 1, 2, \cdots$. Then the following are equivalent:

(1)
$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_{i} f_{i})\|}{\|E^{\perp}(\sum_{i=1}^{n} X_{i} f_{i})\|} : f_{i} \in \mathcal{H}, n \in \mathbb{N}, E \in \mathcal{L} \right\} < \infty,$$
$$\sup \left\{ \frac{\|\sum_{i=1}^{n} X_{i} f_{i}\|}{\|\sum_{i=1}^{n} Y_{i} f_{i}\|} : f_{i} \in \mathcal{H}, n \in \mathbb{N} \right\} < \infty$$

and $\overline{range\ X_k} = \mathcal{H} = \overline{range\ Y_k}$ for some k in $\{1, 2, \cdots, n\}$.

(2) There exists an invertible operator A in AlgL such that $AX_i = Y_i$ for $i = 1, 2, \cdots$.

Proof. Assume that

$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, n \in \mathbb{N}, E \in \mathcal{L} \right\} < \infty$$

and

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} X_i f_i\|}{\|\sum_{i=1}^{n} Y_i f_i\|} : f_i \in \mathcal{H}, n \in \mathbb{N} \right\} < \infty.$$

Let P_k be the projection onto $\overline{rangeX_k}$ for given k. Since $\overline{rangeX_k} = \mathcal{H}$, $P_k = I$. Hence $P_kE = EP_k$, for all E in \mathcal{L} . So there exist operators A in $Alg\mathcal{L}$ and B in $\mathcal{B}(\mathcal{H})$ such that $AX_i = Y_i$ and $BY_i = X_i$ for $i = 1, 2, \cdots$ (see [4, Theorem 2.3]). Hence $X_i = BY_i = BAX_i$ and $Y_i = AX_i = ABY_i$ for all $i = 1, 2, \cdots$. Since $\overline{range\ X_k} = \mathcal{H} = \overline{range\ Y_k}$, AB = I = BA. Hence A is invertible.

Conversely, if there exists an operator A in $Alg\mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \cdots$ and AB = I = BA for some bounded operator B, then $X_i = BY_i$ for all

 $i=1,2,\cdots$. Hence

$$\sup \left\{ \frac{\|E^{\perp}(\sum_{i=1}^{n} Y_i f_i)\|}{\|E^{\perp}(\sum_{i=1}^{n} X_i f_i)\|} : f_i \in \mathcal{H}, \ n \in \mathbb{N}, \ E \in \mathcal{L} \right\} < \infty$$

and

$$\sup \left\{ \frac{\|\sum_{i=1}^{n} X_i f_i\|}{\|\sum_{i=1}^{n} Y_i f_i\|} : f_i \in \mathcal{H}, n \in \mathbb{N} \right\} < \infty.$$

 $\sup\left\{\frac{\|\sum_{i=1}^n X_i f_i\|}{\|\sum_{i=1}^n Y_i f_i\|}: f_i \in \mathcal{H}, \ n \in \mathbb{N}\right\} < \infty.$ By Lemma 2.1, $\operatorname{Ker} A^* = \operatorname{Ker} Y_i^*$ and $\operatorname{Ker} B^* = \operatorname{Ker} X_i^*$ for all $i=1,2,\cdots$. Since A and B are onto, $\overline{range} \ \overline{Y_i}^\perp = 0 = \overline{range} \ \overline{X_i}^\perp$ for all $i=1,2,\cdots$. Hence X_i and Y_i have dense ranges in \mathcal{H} for all $i = 1, 2, \cdots$.

References

- 1. Douglas, R. G.: On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1996), 413-415.
- 2. Hopenwasser, A.: The equation Tx = y in a reflexive operator algebra. *Indiana Univer*sity Math. J. 29 (1980), 121-126.
- 3. Hopenwasser, A.: Hilbert-Schmidt interpolation in CSL algebras. Illinois J. Math. 33 (1989), no. 4, 657-672.
- 4. Jo, Y. S., Kang, J. H. & Park, D. W.: Equations AX = Y and Ax = y in Alg \mathcal{L} . J. Korean Math. Soc. 43 (2006), 399-411.
- 5. Kadison, R.: Irreducible Operator Algebras. Proc. Nat. Acad. Sci. U.S.A. (1957), 273-276.
- 6. Katsoulis, E., Moore, R. L. & Trent, T. T.: Interpolation in nest algebras and applications to operator Corona Theorems. J. Operator Theory 29 (1993), 115-123.
- 7. Lance, E. C.: Some properties of nest algebras. Proc. London Math. Soc. 19 (1969), no. 3, 45-68.
- 8. Munch, N.: Compact causal data interpolation. J. Math. Anal. Appl. 140 (1989), 407-418.

DEPARTMENT OF MATHEMATICS, DAEGU UNIVERSITY, DAEGU, KOREA Email address: jhkang@daegu.ac.kr