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INVERTIBLE INTERPOLATION ON AX =Y IN ALGL

Joo Ho KANG

ABSTRACT. Given operators X and Y acting on a Hilbert space H, an interpolating
operator is a bounded operator A such that AX =Y. An interpolating operator
for n-operators satisfies the equation AX; = Y;, for : = 1,2,--- ,n. In this article,
we showed the following : Let £ be a subspace lattice on a Hilbert space H and let
X and Y be operators in B(H). Then the following are equivalent:

L
1 sup{”%%—ll%:feH,EEE}<oo, sup{“%t-ll%:fe'}'l}<oo

and range X = H =rangeY.
(2) There exists an invertible operator A in Algl such that AX =Y.

1. INTRODUCTION AND PRELIMINARIES

One form of interpolation problems in operator algebras is the following : Given
operators X and Y on a Hilbert space H and an operator algebra \A on H, when
does there exist an operator A in A such that AX = Y? Interpolation problems
have been investigated in several operator algebras by many mathematicians. The
author has studied interpolation problems in Algl and tridiagonal algebras.

The n-vector interpolation problem was considered for a C*-algebra U by Kadison
[6]. In the case of nest algebra U, the (one-vector) interpolation problem was solved
by Lance [7]: his result was extended by Hopenwasser [2] to the case that I is a
CSL-algebra. Munch[8] obtained conditions for interpolation in case A is required to
lie in the ideal of Hilbert-Schimidt operators in a nest algebra. Hopenwasser [3] once
again extended the interpolation condition to the ideal of Hilbert-Schmidt operators
in a CSL-algebra.

Jo-Kang-Park obtained a necessary and sufficient condition for the existence of an
interpolating operator that is in AlgL in [4]. In this paper we showed when there
exists an invertible interpolating operator in AlgC from the previous results.
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A subspace lattice £ is a strongly closed lattice of projections acting on a Hilbert
space H. We assume that the projections 0 and I lie in £. We usually identify
projections and their ranges, so that it makes sense to speak of an operator as
leaving a projection invariant. The symbol AlgL is the algebra of all bounded linear
operators on H that leave invariant all the projections in £. Let M be a subset of
a Hilbert space H. Then M means the closure of M and " means the orthogonal
complement of M. Let N be the set of all natural numbers and let C be the set of
all complex numbers.

2. RESULTS

Let H be a Hilbert space and let B(H) be the algebra of all bounded operators
acting on H. Let L be a subspace lattice (i.e. a complete lattice of orthogonal
projections which contains 0 and I) on H. AlgC is the algebra of all bounded
linear operators on H which leave invariant each projection E in £. Assume that
X and Y are operators in B(H) and A is an operator in Algl such that AX =Y.
Then |ELY f|| = |[ELAXf|| = |[EYAELXf| < |[A|E-Xf||, for all E € L.
If, for convenience, we adopt the convention that a fraction whose numerator and
denominator are both zero is equal to zero, then the inequalities above may be stated
in the form

IEY 7
sup +————— < [| 4] < 0.
sup 1ETx gy = 141

In [4], we showed that the above fact is a necessary and sufficient condition for

existence of an interpolating operator in Algl.

Theorem A ([4]). Let L be a subspace lattice on H and let X and Y be operators
in B(H). Let P be the projection onto rangeX. If PE = EP for each E € L, then

the following statements are equivalent:

(1) There exists an operator A in AlgL such that AX =Y.

IELY £
2 sup{-————:fe'H,EGE = K < 0.
) P [BTX A
Moreover, if condition (2) holds, then we may choose an operator A such that ||A|| =

K.

Theorem B ([1]). Let X and Y be bounded operators acting on a Hilbert space H.

Then the following statements are equivalent:
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(1) rangeY™* C range X*
(2) Y*Y < A2X*X for some A >0
(3) there ezists a bounded operator A on H so that AX =Y.
Moreover, if (1), (2) and (3) are valid, then there exists a unique operator A so that
(a) A2 = inf{u: Y'Y < uX*X}
(b) kerY* = kerA* and
(c) rangeA* C rangeX.

Now, we investigate invertible interpolation problems in AlgL.

Lemma 2.1. Let A, X and Y be operators in B(H). If Y =AX and Al‘—_mnge <+
=0, then Ker A* =Ker Y'*.

Proof. Let f be a vector in Ker A*. Then A*f = 0. So X*A*f = 0. Hence Y*f=0
and f is in Ker Y*.
Conversely, if f is in Ker Y*, then for any g in H,
< f,Ag>=<A*f,g>

=< A*f, Xg1 + g2 > for some g; € H and g3 € range X+t
=< A*f,Xq1 > + < A*f, g2 >
=< f,AXg1 > + < f,Ag2 >
=< f,Yq >+ 0=0.

Hence f € range AJ'(=Ker A*). O

Theorem 2.2. Let L be a subspace lattice on a Hilbert space H and let X and Y

be operators in B(H). Then the following assertions are equivalent:
|ELY £ XS

1) sup{”—E—J_X—f”:feH,Eeﬁ} < 00, sup{”—Y-ﬂl-.fe'H} < 00

and range X = H =range Y.
(2) There exists an invertible operator A in Algl such that AX =Y.

Proof. Assume that

Elyf
up{%E—J_Yf—“:fEH, E€£}<ooand sup{ﬂ?f—”:fe'H}<oo.

Let P be the projection onto rangeX. Since rangeX = H, P = I. Hence PE =
EP for all E in £. So there exist operators A in Algl and B in B(H) such that

IX Sl
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AX =Y and BY = X by Theorem A and Theorem B. So X = BY = BAX and
Y = AX = ABY. Since range X = H = range Y, AB = I = BA. Hence A is
invertible.

Conversely, if there exists an operator A in Algl such that AX =Y and AB =
I = BA for some bounded operator B, then X = BY.

Hence “ N ”
BYf)|
Sup{m.fEH,EEAC} < o0
and 1X 71l
S“p{ vt e”}

Since A and B are onto, KerA* = KerY™ and KerB* = KerX™, range Yi=0=
range X + by Lemma 2.1. Hence X and Y have dense ranges in H.

a

Theorem 2.3. Let L be a subspace lattice acting on a Hilbert space H and let X;
and Y; be operators in B(H) for i = 1,2,--- ,n. Then the following assertions are
equivalent:

(1)

“E-L(E?=1 Y fi)ll s -
Sup{”El(Z?ﬂ Xl fieH, Eec L} < 00,

IS XAl
S“p{nz YAl fléH}“"

and range Xx = H = range Yy for some k in {1,2,--- ,n}.
(2) There ezists an invertible operator A in AlgL such that AX; =Y; for i =
1,2, ,n

Proof. Assume that

w |EL(CR il L 00
p{uEl(z;;l X.fo e EE ‘} <

N> Xafill
S‘”’{ S vl € H} <o

Let P, be the projection onto rangeXy for given k. Since rangeXy = H, P, = I.
Hence P.E = EP,, for all E in £. So there exist operators 4 in Algl and B in
B(H) such that AX; = Y; and BY; = X; for i = 1,2,--- ,n by Theorem 2.2[4]. So
X; = BY; = BAX,; and Y; = AX; = ABY;. Since range Xt = H = range Y, for
somek =1,2,---,n, AB=1= BA. Hence A is invertible.

and
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Conversely, if there exists an operator A in Algl such that AX; = Y for { =
1,2,--- ,n and AB = I = BA for some bounded operator B, then X; = BY; for all
1=1,2,--- ,n. Hence

IEAS, Yl }
o TEraa] £ FeL) <

and

2oy Xifill }

supl —=——" " fie H} < .
{ 1 m Yafill "

By Lemma 2.1, KerA* = KerY;* and KerB* = KerX/. Since A and B are onto,

range YiL = 0 = range Xil. Hence X; and Y; have dense ranges in H for all

i=1,2,,n O

Theorem 2.4. Let L be a subspace lattice acting on a Hilbert space H and let X;
and Y; be operators in B(H) fori=1,2,---. Then the following are equivalent:

(1)

|IELC Vil
Sup{l|E’L(Z?=1Xifi)” cfieH,neN, EEE} < 00,

> Xifill }
supq ——=—=——-——: fie H,neN) <0
{ | 2t Yalfill
and range Xy = H = range Yy for some k in {1,2,--- ,n}.
(2) There exists an invertible operator A in AlgL such that AX; =Y, fori =
1,2,

Proof. Assume that

IEXSL, YA, |
sup{”E'L(Z?=1Xifi)” fieH,neNE€eL) <>

and

| >, Xifill }
SUpY ———— i€ H,n e N} < 00.
{ | > i Yafill

Let Py be the projection onto rangeXy for given k. Since rangeX; = H, P, = I.
Hence PLE = EP;, for all E in £. So there exist operators A in Algl and B in
B(H) such that AX; = Y; and BY; = X; for ¢ = 1,2,--- (see [4, Theorem 2.3]).
Hence X; = BY; = BAX; and Y; = AX, = ABY; for all ¢ = 1,2,---. Since
range X = H = range Yy, AB = I = BA. Hence A is invertible.

Conversely, if there exists an operator A in Algl such that AX; = Y; for i =
1,2,--- and AB = I = BA for some bounded operator B, then X; = BY; for all
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t=1,2,---. Hence

EL(S™ vt
wp{” (2im Yifi)ll ﬁeHﬂuﬂ&Ee£}<m

B+ (i Xafo)ll
e |8, Xefil

su =1 1ot f~€H,n€N}<oo

{ I Yafill
By Lemma 2.1, KerA* = KerY;* and KerB* = KerX? for alli = 1,2,---. Since A
and B are onto, range Yil = 0 = range Xil foralli=1,2,---. Hence X; and Y;
have dense ranges in H for all i =1,2,---. O
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