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APPROXIMATING THE STIELTJES INTEGRAL OF
BOUNDED FUNCTIONS AND APPLICATIONS FOR THREE
POINT QUADRATURE RULES

SEVER SILVESTRU DRAGOMIR

ABSTRACT. Sharp error estimates in approximating the Stieltjes integral
with bounded integrands and bounded integrators respectively, are given.
Applications for three point quadrature rules of n—time differentiable
functions are also provided.

1. Introduction

In order to approximate the Stieltjes integral fab f(t) du (t) with the simpler
expression

(L1) —— [u (b / f(t)d

S. S. Dragomir and 1. Fedotov [8] introduced in 1998 the following error func-
tional

(1.2) (fuab)-—/f t) du t)———[u (b) — u{a /ft)dt

provided that both the Stieltjes integral fa f (t) du (t) and the Riemann integral

fab f (t) dt exist.
If the integrand f is Riemann integrable on [a,b] and the integrator u :
[a,b] — R is L— Lipschitzian, i.e.,

(1.3) fu(t) —u(s)] < Lit—s| foreach t,s€a,b,

then the Stieltjes integral f: f (t) du (t) exists and, as pointed out in [8],

b b
(1.4) D (f,uab) < L / £t / £ (s) ds| dt
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The inequality (1.4) is sharp in the sense that the multiplicative constant C = 1
in front of L cannot be replaced by a smaller quantity. Moreover, if there exist
the constants m, M € R such that

(1.5) m< f{t) <M forae. t€lab],
then [8]
(16) D (fw0,D)] < 5L(M —m) (b~ a).

The constant % is best possible in (1.6).
A different approach in the case of integrands of bounded variation were
considered by the same authors in 2001, see [9], where they proved that

1 ’
a7 ID(Gwen) < max |70 - =7 [ F6)ds|V W),

tc(a,b]

provided that f is continuous and u is of bounded variation. Here \/Z (u)
denotes the total variation of u on [a,b]. The inequality (1.7) is also sharp.
If we assume that f is K —Lipschitzian, then [9]

(18) 1D (fu0,0) < 5K (b—a)\/ (),

with 2 the best possible constant in (1.8).

For various bounds on the error functional D (f,u;a,b) where f and u belong
to different classes of functions for which the Stieltjes integral exists, see [2],
[5], [6] and [7] and the references therein.

The main aim of the present paper is to estimate the error of approximating
the Stieltjes integral f: £ (t) du (¢) with the simpler expression

m+ M
2

(1.9) [u (b) —u(a)]

provided the integrand f is bounded below by m and above by M.

In the dual case, i.e., when n < u{t) < M on [a,b], the problem under
consideration consists of approximating the same Stieltjes integral fab F(t)dult)
with the quantity

(1.10) [u(b) - ";N] Fo)+ {

- u@)| f@).

Applications for the three point quadrature rule of n—differentiable functions
are also given.
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2. Inequalities for the Stieltjes integral
The following result may be stated.

Theorem 1. Let u : [a,b] — R be a function of bounded variation and f :
la,b] — R a function such that there exists the constants m, M € R with

(2.1) m< f(t) <M foreach t€|a,b],

and the Stieltjes integral fab f (@) du(t) exists. Then, by defining the error func-
tional

m+ M

b
A (fyuym, Mia,b) = / £ (t) du(t) - [ () - w(a)],

we have the bound
b
(2.2) A (f,umMab)|< \/
a

The constant 3 is best possible in (2.2) in the sense that it cannot be replaced
by a smaller quantity.

Proof. Since, obviously, the function f — 2EM satisfies the inequality

M 1
f(t)~m; 2(M m) for any t € [a,b]
and the Stieltjes integral ff (f (t) — M) du (¢) exists, then
b
m + M m + M
[ (r0-"5" ) au)| < s |70 - V)
a tela,bl a
1

l\D

b
< (M- m\/

and the inequality (2.2) is proved.
Now, assume that (2.2) holds with a positive constant C, i.e.,

b
(2.3) |A(f,u,m, M;a,b)| < C(M -m)\/ (w),

provided u is of bounded variation on [a, b] and f satisfies (2.1).
If we consider the function fy (t) := sgn (¢t — a+b) and ug (t) = 1 (t - 3“253)2,

then we observe that the Stieltjes integral f fo (t) dug (¢) exists, fo is bounded
above by My = 1 and below by mg = ~1, ug is of bounded variation and

b b e
\a/(uo)=/a lup (£)] dt = (b 4a) .

a+b

t—
2

Idtz
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/fo duo(t)—/asgn( ;b> (t—a;b)dt

:/b a+b (b—a)®

Also

t— dt =

2 4
and replacing fo and ug in (2.3) produces the inequality

(b—a)’ (- a)
USRS

<2C.
which implies that C > 3. O

The following corollary provides a natural example of functions f that can
be chosen to fulfill the conditions in the above theorem.

Corollary 1. Let u : [a,b] — R be a function of bounded variation on [a,b)
and f a continuous function on [a,b]. Then

1 b
(2.0 A (fusa,b) < 5b%§ﬂw—gggtﬂy
where
min f () + max f{t)
5&wmw:/3umww—mw‘ [ () — u a)].

The constant § is best possible.

Proof. For the sharpness of the constant, we cannot use the above example
since fp was not continuous on [a, ] .
Let us now consider uo (t) = sgn(t— %) and fo(t) = |t — %2|. The

Stieltjes integral f fo (£) dug () exists and

/ fo (t) duo (t)
b

atb
:b;a+b;“—[/az (—1)d<a;b—t>+/g;(1)d<t a;“b>
=0
we have then
1B (o u0i0.8)| = 252

Also

t€la,b) [a,b]

b
% [max fo@®) —~ mm fo (t)] \a/(uo) _b 5
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which shows that the equality case holds in (2.4). |

The following result providing bounds for the Lipshitzain integrators may
be stated as well:

Theorem 2. Ifu: [a,b] — R is L— Lipschitzian and f : [a,b] — R is Riemann
integrable and satisfies the condition (2.1), then

1
(2.5) ]A(f,u,m,M;a,b)ISE(M—m)L(b—a).
The constant % is best possible.

Proof. It is well known that if p is Riemann integrable on [a,b] and v is
L—Lipschitzian on [a, ], then the Stieltjes integral ff p (t) dv (t) exists and

b
(2.6) SL/Wmma.

m+M
2

b
/pwww

is Riemann integrable, by making

b
SL/
a

(M —m)L(b—a)

Now, taking into account that f —
use of (2.6) we have

L%ﬂw—m;M)mm

and the desired inequality (2.5) is obtained.
To prove the sharpness of the constant %, assume that the inequality (2.5)
holds with a positive constant D, i.e.,

(27) |A(f,u,m,M;a,b)|SD(M—m)L(b—a),

provided f is Riemann integrable and satisfies (2.1) while w is Lipschitz con-
tinuous with the constant L > 0.

Consider the functions fo (t) = sgn (t — 4$2) and uo (¢) = |t — 2$8|. It is
obvious that fy is Riemann integrable and My = 1, my = —1. Since, by the
triangle inequality we have

ro - 25

<

DO =

t—

s_a+b
2

o () w0 9)] = | <-4

for any ¢,s € [a,b], hence ug is Lipschitzian with the constant L = 1. Now,
observe that

/abfo(t)duo(t): /absgn<t—aT+b>d(}t— “;LbD
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and introducing the above values in (2.7) we deduce
b—a<2D(b—-a),
which implies that D > 1. m|

Corollary 2. If f is continuous on [a,b] and u is L— Lipschitzian, then:

(2.8) |A(f,uab)( {max F(t) - min f()] (b—a).

t€[a,b] t&fa,b]
The constant 5 is best possible.

Proof. In order to prove the sharpness of the constant, we cannot use the
example from Theorem 2 since fo was not continuous.
If uo (t) = lt - %H and fp is continuous, then

b b
/afo(t)dt—a;_b :/a sgn(t—a—i—)fo(t)dt

Counsider now the sequence of continuous functions

-1 if tea,%t-1];
fon®)={ ~1+n(t—2+ 1) if te (-5 50 +7);
1 ifte[“—;—u;ﬁ—,b],
which coincides with uo (t) = sgn (t — %) on [a, 22 — L] U [%2 + L1,b] and
connects the end segments of this function on [—2— - % 9—;—“— %] respectlvely.
Obviously
b
/ sgn (t - 9—+——> fon (t)dt
o 2
atb 1 atb 1 b
2 n 2 n b
= dt + sgn t—a—+— fon (t)dt + dt
a atb 1 2 ’ atb 1
2 n 2 n
=b—a+xy,,
where
etb 1
T 7w a+b 2
|| = _/a_?f_b_l sgn (t————) Jon (t)dt| < e

Now, if (2.8) holds with a constant F > 0, i.e.,

~ ' < 3 _
}A (f,u;a, b)] <E Lrenigfg] f(® in, [ )] L(b-a),
then on choosing fo,, and ug as above, we get

b—a+z, <2E(b—a)
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for each n € N. Letting n — oo and taking into account that lim z, = 0, we
n—oo

deduce E > %, and the corollary is proved. ]

Corollary 3. Let f,h: [a,b] — R be Riemann integrable functions, f satisfies
(2.1) and |h (t)] < N for a.e. t € [a,b]. Then

m+M

(2.9) t)dt —

%(M m)N (b—a).

The constant % 18 best possible.

The proof follows by (2.5) on choosing u ( f h(s)ds. The details are
omitted.
Finally, we can state the following result as well.

Theorem 3. Let u : [a,b] — R be a monotonic nondecreasing function on
[a,b] and f : [a,b] — R a bounded function satisfying (2.1) and such that
fabf (t) du (t) exists. Then

m+M

F) -

< 5<M—m>[u<b)—u(a)].

(2.10) |Ammem@|§(/ du (1)

The first inequality in (2.10) s sharp. The constant % is best possible.
Proof. The inequality

/: (f(t)—m;M)du(t) s/:

follows by the definition of Stieltjes integrals.

m+ M

f) -

Since
'f(t)—m+M (M —m) foreach t € [a,b],
we also have that
b b
[ lro-"5% dw < g or-m) [Cau

:?M—WW@—MM

and the inequality (2.10) is thus proved.
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Now, assume that fo (t) = sgn (t — %b) ,t € [a,b]. Then for any continuous
and monotonic nondecreasing function ug : [a,b] — R we can state that

A (an’U’OamO;MU;a'a b)
atb b

_ / (=1) duo (£) + /_ (1) duo (£)

2
Also,
b
[ 100 = PR o (1) = w0 ()~ w0 @)
and
2 (Mo = m0) fuio (5) — o ()] = o (8) = o (a),

which shows that the last inequality holds with equality in (1.9).

Finally, to have equality in the first part of (2.10) it is sufficient selecting
up to vanish in [a, “T“’] and being continuous and monotonic nondecreasing
on [l'g—b,b] . In this situation we get in all terms of (2.10) the same quantity

Ug (b) . O

Corollary 4. If f is continuous on [a,b] and u is monotonic nondecreasing,
then
t t
(&) + max f(?)
2

(2.11) {Z(f,u;a,b))s/b f(t)_trelfifil du (1)

1
<= t) — mi - .
< | 70— min £ ) - u o)

To prove the sharpness of the inequality we use the functions fo (t) =
|t — 22| and uo (t) = sgn (t — %t) which produce in all terms of (2.11) the
quantity ”‘T"

Corollary 5. If f,w are Riemann integrable on [a,b] and f satisfies (2.1) while
w is nonnegative, then
b
<),
a

b b
/(Lf(t)w(t)dt—mJ;M/a w(t) dt m+M
S%(M—m)/abw(t)dt.

f@)— 5 ‘w(t)dt

(2.12)

The dual case, i.e., when the integrator is bounded below and above, is
incorporated in the following result.
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Theorem 4. Assume that u is Riemann integrable on [a,b] and
(2.13) —co<n<u(t)<N<oo forae tE€la,b.

Define the error functional of generalized trapezoid type

vmmmwww:=@@—”*N]NM+F+N—umﬂﬂw

2 2
b
- [ swau
a
(i) If f is of bounded variation and such that the Stieltjes integral
b
| 1wdu
a
exists, then
1 b
(2.14) |7 (f,u,m, N;a,b)] < o (N \/

The constant & is best possible in (2.14).
(ii) If f is K— Lipschitzian on [a,b], then

(2.15) 17 (s wm, Nia,b) < 5 (N =) K (b= a).

The constant & is best possible in (2.15).
(iii) If f is monotonic nondecreasing on [a,b] such that the Stieltjes inte-

grals, f; F®)du(t), f: |u(t) — 22| df (¢) exist, then

e wGunNan < [ |- "
< SV-mf )~ f(a).

The first inequality is sharp and the constant % is best possible in (2.16).
Proof. The proof follows by Theorems 1 — 3 on utilizing the integral identity:

[u(b)—n;N]f(b)—l—[n_;N—u a)} /f ) du (¢

- /ab[uu) L

and the details are omitted. O

Remark 1. The above inequalities also hold for continuous functions u : {a, b] —
R when 7 is replaced by mingc(,) u (t) and N is replaced by maxe(q,p u (t) .
The details are left to the interested reader.
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3. Applications for three point quadrature rules

In [1] (see also {10, p. 223]) P. Cerone and S. S. Dragomir established the
following three point quadrature rule for n—times differentiable functions:

b n
(3.1) / f@)dt = Z % {(1 _ ,}/)k [(b _ :L‘)k + (_1)k—1 (z — a)k] f(k—l) (z)
@ k=1
+ 9 [~ ) F6 (@) + (-1 o - ) £ )]}

+(-1)" /b Ch (z,) f™ () dt,

where
L——————l—t_(”‘*fll!”")“) Toifte [a,z];
(3.2) Cp (z,t) =

[t—(“/ﬂ:+7(7j~’7)b) " if te (a:,b],

and vy € [0,1], z € (a,b).

This representation comprises amongst others the interior point quadrature
rule obtained by Cerone et al. [3] in 1999 for v = 0 and the trapezoid guadrature
rule obtained by Cerone et al. [4] in 2000 for v = 1.

Consider the function:

It:(wtr(ni_l’)yl)a)]nﬂ if te€la,x;

(3.3) Kn(z,t) = (~1)"

_ _ n+1 .
st i g e (g1,

The function K, (z,-) : [a,b] — R, for each fixed z € [a,b], is of bounded
variation and

\?(Kn(x")) B /I ﬁ%ﬁ’dwr/:

_ /”” It—(7w+(1—7)a)l"dt+/b het+@-pb—t"

dK, (=,1)
Hen Do

n! n!
We have
Tt - 1-— "
oy R Rl
o n!
yz+(1-7v)a n z n
:/ e+ -v)a—{ dt+/ [-(z+1-—val ,
a n! yz+(1—7v)a n!
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B e+ (—v)a— t]n+1 yet+(1=va N t—(yz+QQ—-7) a)]n+1 ’
m+ 1) (n+1)! rot(1=7)a
B G MM ¢ et M e o)™
(n+1)! (n +1)!

and
. =/" he+(-nb-—i",

=/W+(1—m bt -nb-t" . /b [tz + -]

i n! yo+(1=7)b n!

yz+(1—7)b b

he+ (0 -yb—f*"
(n+ 1)!

[t = (ya+ (1 -y B)""
(n+1)!

yr+(1-7)b
R e R ) R G (e M
B (n+1)! (n+1)!

:(n——kll_)! (b— )"t [,yn—{-l +(1- 7)n+1] '
Therefore
(3.4)
b
\/(Kn (z,)) = (n i 1! [7n+1 +(1- 'y)n+1] [(b _ x)n-&—l b a)”+1] |

a

We also have

(35)
[ o watwn= [0 [(—1)" oo 1) a)]"“J

b _ - _ n+1
+/z f(n) (t)d [(_1)11 [t (v :T'l(i 1);7) b)] :'

~ (—1)" / (62 £ (1)

with Cy, (¢, z) defined by (3.2).
We can state the following result in approximating the Riemann integral

f; f (z) dz of n—times differentiable functions f in terms of three point quad-
rature rules.

Theorem 5. Let f : [a,b] — R be a function such that for n > 1 the derivative
f=1) 4s absolutely continuous and there exists the real constants v,,,I', such
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that
(3.6) v, < fM () < Ty, for a.e. t€a,b].
Then

=Y {0 [e-9t + )7 @ -0 14 @)

k
+ 9 (o= a)f 7 (@) + (<D o - 2)F £4V )] }

,Yn—i—l

Blor ()" b -2)™ + (= 0] s o+ R,

(n+1)!

and the error R, satisfies the bound
(3.8)

1Bl < 5 (O =) g [+ =)™ [0 =)™ 4+ (@ = 0)"*]

1
(n+1)!
for v €0,1] and = € [a,b].

Proof. We apply Theorem 1 for the functions f () and K (z,-) to get:

/b £ (t) dE, (z,t) — M;-FT‘L (K (2,) = Kn (2, a)]

b
< 3 T =,) V (5o (@)

for z € [a,b].
Since
L mb-Gr+a-yptt
_ n 'Yn+1 (b - x>n+1
= (1) BT
and

[a— (yz+ (1 =y a)*"

(n+1)!
]n-l-l

_ (oyrble—al

= (1) (rn+1)!

I G Gt M
T+

K, (z,0) = (-1)"
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hence by (3.4) and (3.5) we deduce:

b
69) 0" [ o) 1 @
_ YntIn )" At (p — ;,;)n+1 AL (g — a)n-i-l
2 (n+1)! (n+1)!
1 1

< = _ n+1 _ n-1 _ n+1 _ n+41 )

< 5 =) oy [+ A= [0 2™ -0
Finally, on utilizing the identity (3.1) we deduce from (3.9) the representation
(3.7) and the estimate (3.8). 0

Remark 2. The above approximation of the integral ff f () dt contains some
particular cases of interest.
If A =0, then we have

I

b n
gy [ rwa=3 500"+ 0" @- 0] SV @ + T

with

Tl < 5 (O =7,) (-2 + (@ -]

(n-ll— 1! [

If A = 3, then we have
b n
(3.11) / f (t) dt = Z ,271]{:_' { [(b _ SC)k + (_1)k—1 (.’L‘ _ a)k} f(k—l) (l‘)
a k=1 '
+ = @) 4V (@) + (-1 - 2 £ ()]}

with .
Ml < gy T = 7a) [0 = 2" + e = @)™

Finally, if A = 1, then we have

b U | k p(k—1) k-1 k p(k—1)
1) [ fd=Y 5 le-a" f0 @+ ) 0= 14 )]
@ k=1""
Yo+ Tn

TS mr )

(1" -2 + @ - 0™ +Qn,

with

|Qn] (T =72) [0 =)™ + @ = a)"'].

1
< -
“2(n+1)!
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