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Recent studies suggest that alterations in glutamate receptor subunit levels in mesocorticolimbic
dopamine areas could account for neural adaptations in response to psychostimulant drugs. Although
many drugs of abuse induce changes in ionotropic glutamate receptor subunits in mesocorticolimbic
dopamine areas, the changes of ionotropic glutamate receptor subunits by repeated nicotine treatment
in these areas are not known. To answer this question, we injected male Sprague-Dawley rats twice
daily with nicotine (0.4 mg/kg) or saline (1 ml/kg) for 10 days. The immunoreactivity of NR1, GluR1,
and GluR2 glutamate receptor subunits was examined 16~ 18 h after the last injection of saline or
nicotine. Repeated nicotine treatment significantly increased NR1 levels in the ventral tegmental area
(VTA). In addition, repeated nicotine treatment showed a tendency towards an increase in GluR1 levels
in the VTA as well as in striatum. However, there was no significant change in glutamate receptor
subunits in other areas including nucleus accumbens (NAc). These results demonstrate that repeated
nicotine treatment increases NR1 levels in VTA similarly to other drugs of abuse, suggesting that
elevated glutamate receptor subunits in the VTA, but not NAc may be involved in the excitation of
mesocorticolimbic dopamine neurons by nicotine.
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INTRODUCTION

Tobacco smoking is addictive and its use is the single most
important preventable health risk in the developed world
(Fagerstrom, 2002). Nicotine is known as a component of
tobacco that induces habitual smoking (Nisell et al, 1995).
Considerable evidence suggests that mesocorticolimbic
dopamine (DA) system, which originates in the ventral teg-
mental area (VTA) and innervates the nucleus accumbens
(NAc) and prefrontal cortex (Fallon & Moore, 1978), has
been attributed to the positive reinforcement of many drugs
of abuse, including nicotine. Nicotine increases the firing
rate and burst firing of DA neurons in VTA (Grenhoff et
al, 1986; Johnson et al, 1992; Nisell et al, 1996; Fisher et
al, 1998), which, in turn, leads to increased release of DA
in NAc (Johnson et al, 1992; Chergui et al, 1993). This
increase in extracellular DA in the NAc is thought to
mediate the positive reinforcement (Corrigall et al, 1992;
Corrigall et al, 1994) and rewarding action of nicotine
(Schilstrom et al, 1998b). Moreover, nicotine also acts at
presynaptic @7 nicotinic acetylcholine receptors (nAChRs)
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located on glutamatergic afferents to VTA to increase
glutamate release (Schilstrom et al, 2000), thereby
increasing DA release in NAc through NMDA receptors on
dopamine neurons in VTA (Schilstrom et al, 1998a;
Svensson et al, 1998; Fu et al, 2000).

Recently, in addition to changes in glutamate release in
VTA, it has been suggested that many drugs of abuse
induce changes in ionotropic glutamate receptor subunits
in mesocorticolimbic dopamine areas. For example, re-
peated treatment of cocaine (Churchill et al, 1999),
morphine (Fitzgerald et al, 1996) or ethanol (Ortiz et al,
1996) increases GluR1 levels, one of the @-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor sub-
units, in the VTA, which could contribute to increased
sensitivity to the locomotor stimulating and rewarding ac-
tions of drugs of abuse (Carlezon et al, 1997). Although a
single systemic injection does not change GluR1 expression
in VTA (Ferrari et al, 2002), changes of ionotropic gluta-
mate receptor subunits by repeated nicotine treatment in
mesocorticolimbic dopamine areas have not been studied.

ABBREVIATIONS: VTA, ventral tegmental area; DA, dopamine;
NAC, nucleus accumbens; nAChR, nicotinic acetylcholine receptor;
NMDA, N-methyl-D-aspartate; AMPA, @-amino-3-hydroxy-5-methyl-
4-isoxazole propionic acid; mPFC, medial prefrontal cortex; SN,
substantia nigra.
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To answer this question, we injected rats with nicotine for
10 days, and observed the changes of ionotropic glutamate
receptor subunits in mesocorticolimbic dopamine areas.

METHODS
Animals and nicotine administration

Male Sprague-Dawley rats (initial weight 240~260 g,
Samtaco, Osan, Korea) were received 4 days before experi-
ment and were group housed 3 per cage under a 12 h
light-dark cycle (light on at 6:00 A.M.). Food and water
were available ad Ilibitum. All experimental procedures
performed on the animals were in accordance with the NITH
Guide for the Care and Use of Laboratory Animals
(Institute of Laboratory Animal Resources, 1996). All rats
received injections twice daily (at 10:00 A.M. and 16:00
P.M.) for 10 days with either nicotine [0.4 mg/kg, s.c.,
(—)-nicotine hydrogen tartate salt, Sigma, St. Louis, MO]
or 0.9 % saline (1 mlkg, s.c.). (—)-Nicotine hydrogen
tartrate salt was dissolved in 0.9% saline solution, and
adjusted to pH 7.2~7.4 with 1 N NaOH. This dose of
nicotine has been shown to enhance levels of extracellular
dopamine in the nucleus accumbens and increase locomotor
activity in response to subsequent injection of nicotine
(Benwell & Balfour, 1992; Benwell et al, 1995).

Western blot analyses of glutamate receptor subunits

Rats were killed by decapitation 16~ 18 h after the last
injection of nicotine or saline, as reported previously for
cocaine (Fitzgerald et al, 1996; Boundy et al, 1998) or
morphine (Lane-Ladd et al, 1997). Brains were placed in
ice-cold artificial cerebrospinal fluid and 1.0 mm-thick
coronal slices of brain were obtained with Mcllwain tissue
chopper (Brinkmann Instruments, Westbury, USA). The
appropriate brain regions were dissected on an ice-cooled
plate using a 12 or 15-gauge tissue punch according to the
method of Wolf et al (1999). Bilateral tissue samples were
homogenized in 1% sodium dodecyl sulfate (SDS) (Berhow
et al, 1996; Fitzgerald et al, 1996) and frozen in aliquots
at —80°C. Protein content was determined using Bio-Rad
protein assay (Bio-Rad Laboratories Inc., Hercules, USA).
Samples (15~30 xg of protein) were subjected to SDS-
polyacrylamide gel electrophoresis with resolving gels
containing 8% acrylamide and transferred electrophoreti-
cally to PVDF membranes (Bio-Rad Laboratories Inc., Her-
cules, USA). Proteins were probed for glutamate receptor
subunit GluR1 (1 :2000; Chemicon, Temecula, USA),
GluR2 (1 :2000; Chemicon, Temecula, USA) or NR1
(1:2000; Chemicon, Temecula, USA) separately for 48 h at
4°C. The specificity of these antibodies has been established
(Manabe et al, 2000; Terashima et al, 2004; Priel et al,
2005) and these antibodies recognized specific bands at
their predicted molecular weights. Proteins were detected
using horseradish peroxidase-conjugated IgG (1 : 2000;
Vector, Burlingame, USA) followed by chemiluminescence
(Amersham Biosciences, Arlington Heights, USA) and
exposed to Hyperfilm (Amersham Biosciences, Arlington
Heights, USA). Equal loading and transfer of proteins were
confirmed in every experiment by analyzing blots with
amido black staining (Lane-Ladd et al, 1997).
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Fig. 1. Densitometric analysis of glutamate receptor subunit levels
in ventral tegmental area (VTA) 10 days after rzpeated injection
with saline (white bar) or nicotine (black bar). Data are meanSEM
percent change from values for repeated saline-treated control
(abbreviated as saline control) for each immunoblot. Repeated
nicotine-treated rats demonstrated a significant increase of NR1
(p<0.05) compared to saline control (n=9 per group). *p<0.05
compared to saline control.
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Fig. 2. Effect of repeated nicotine treatment on the levels of
glutamate receptor subunit immunoreactivity in rat ventral teg-
mental area (VTA) and nucleus accumbens (NAc) as determined
by Western blotting. —: repeated saline-treated control, +: re-
peated nicotine-treated group.

Data analysis

Levels of immunoreactivity were quantified by measuring
the optical density of each band using computer-assisted
densitometry (NIH Image analysis program, version 1.61).
Values of each bands obtained in repeated saline-treated
control rats (abbreviated as saline control) were averaged,
and the remaining data were normalized as percentage of
saline control. Data were combined across blots for
statistical analysis. The percent values in the Western blots
between saline control and repeated nicotine-treated rats
were compared using a two-tailed unpaired Student's i-test
with a significance set at p<0.05.

RESULTS

Effects of repeated nicotine treatment on glutamate
receptor subunit changes in the VTA

Repeated nicotine treatment caused a significant
increase in NR1 levels (125.8+9.1% of saline control) in the
VTA, whereas the same treatment did not alter GluR2



Nicotine-induced Changes in Glutamate Receptor Subunits 141

Table 1. Effects of repeated nicotine treatment on percent change of glutamate receptor subunits in nucleus accumbens (NAc), medial
prefrontal cortex (mPFC), and substantia nigra (SN). Data are meantSEM percent change in optical density from saline control

NR1 GluR1 GluR2
Saline Nicotine Saline Nicotine Saline Nicotine
NAc 100.0+8.3 94.7+8.8 100.0+10.1 100.0+£6.7 100.0+8.3 94.7+8.8
mPFC 100.0+6.3 96.4+6.6 100.0+10.6 106.1+9.8 100.0+£9.5 106.4+5.7
SN 100.0+15.4 99.7+17.0 100.0+£9.1 103.4+9.0 100.0+6.3 108.9+8.3
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Fig. 3. Densitometric analysis of glutamate receptor subunit levels
in striatum 10 days after repeated injection with saline (white bar)
or nicotine (black bar). Data are mean+SEM percent change from
values for repeated saline-treated control. There was a trend for
an increase in GluR1 levels of striatum in repeated nicotine-treated
rats (n=9 per group).

levels in the VTA. In addition, repeated nicotine treatment
increased GluR1 levels in the VTA (117.6+7.9% of saline
control), but this difference did not reach a statistical
significance (Fig. 1, 2).

Effects of repeated nicotine treatment on glutamate
receptor subunit changes in the NAc

Repeated nicotine treatment slightly decreased NR1 and
GluR2 levels compared to saline control, but this effect was
not statistically significant (p>0.05). There was no
significant change in GluR1 levels following repeated
nicotine treatment compared with saline control (Fig. 2,
Table 1).

Effects of repeated nicotine treatment on glutamate
receptor subunit changes in the striatum

Repeated nicotine treatment caused an increase in GluR1
levels (121.6+13.2% of saline control) and NR1 levels
(110.2+9.3% of saline control), respectively, but these effects
were not statistically significant (p>0.05). There was no
change in GluR2 levels following repeated nicotine
treatment compared with saline control (Fig. 3).

The present study demonstrates that repeated nicotine
treatment significantly increased NR1 levels in VTA, which
is similar to that reported after long-term treatments with
ethanol (Ortiz et al, 1995) or cocaine (Fitzgerald et al, 1996;
Churchill et al, 1999). Extensive pharmacological and
physiological evidence shows the presence of NMDA and
AMPA receptors in midbrain dopaminergic neurons (Over-
ton & Clark, 1992; Chergui et al, 1993; Wang & French,
1993). The electrical activity of VTA DA neurons and the
release of DA in the NAc are strongly regulated by the
activation of these glutamate receptors on VTA DA neurons
(Suaud-Chagny et al, 1992). The activation of NMDA or
AMPA receptors increases firing of VTA DA neurons, but
there is a difference in firing nature: NMDA receptor acti-
vation increases burst firing while AMPA receptor acti-
vation increases sustained firing. Apart from the sustained
firing, the burst firing of VTA DA neurons are known to
enhance the DA release in the NAc (Suaud-Chagny et al,
1992; Chergui et al, 1993). Furthermore, repeatitive nico-
tine treatment increases burst firing of VTA neurons in a
manner that is antagonized by NMDA receptor antagonists
(Nisell et al, 1996). Interestingly, @7 nAChRs are located
on presynaptic glutamatergic terminal and, when these
receptors are activated by nicotine, glutamate release from
presynaptic glutamatergic terminal in VTA is increased
(Schilstrom et al, 1998a). Thus, activation of presynaptic
a7 nAChR by nicotine enhances glutamate release, which
in turn leads to an increased activation of NMDA and
AMPA receptors on VTA DA neurons. This hypothesis is
supported by the finding that decreased function of NMDA
receptor by NR1 antisense oligonucleotide reduces the
number of bursts and percentage of DA neurons exhibiting
a bursting pattern (Tajiri et al, 2001). Considering these
together, increased NR1 levels by repeated nicotine
treatment in the present experiment may be one of the
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mechanisms by which nicotine increases the excitatory
synaptic transmission in the VTA. It would be likely that
repeated nicotine treatments increase the sensitivity of the
NMDA receptors to subsequent stimulation by nicotine,
which may be accompanied by burst firing of DA neuron
in VTA (Nisell et al, 1996) as well as an increase in DA
release in NAc (Benwell & Balfour, 1992).

Although GluR1 increase in VTA following repeated
nicotine treatment was not significant, a tendency toward
an increase of GIuR1 in VTA may further contribute to the
excitation of mesocorticolimbic dopamine neurons (Grillner
& Svensson, 2000). Similar to our findings, repeated
treatment with ethanol, morphine or cocaine increases
GluR1 levels in the VTA (Ortiz et al, 1995; Fitzgerald et
al, 1996; Churchill et al, 1999). Elevated GluR1 levels in
the VTA may increase the formation of GluR1-homomeric
AMPA receptors which can enhance Ca®' influx to glu-
tamate stimulation (Carlezon et al, 1997; Neve et al, 1997).
Thus, VTA DA neurons may be more sensitive to AMPA-
receptor initiated Ca®" influx by nicotine after repeated
nicotine treatment. As with increased NR1 levels in VTA,
AMPA receptor activation may contribute further to the
increase in the excitability and function of VTA dopami-
nergic neurons. However, it was reported that chronic
administration of nicotine, using osmotic minipump, lead
to a decreased firing rate of dopamine neuron in VTA
(Rasmussen & Czachura, 1995). The reasons for this
different result are not clear, but may be related to the
treatment dose, regimen, duration and the time after the
last drug dose (Carlezon & Nestler, 2002). For example,
sensitization of dopamine release to subsequent challenge
dose of nicotine is only observed after daily nicotine
injection, but not after constant subcutaneous infusion of
nicotine via Alzet minipumps (Benwell et al, 1995).
Interestingly, repeated intermittent, but not constant, ad-
ministration of morphine induces an increase of GluR1
subunit in VTA (Fitzgerald et al, 1996), suggesting that
intermittent injection of nicotine causes a different result
compared with osmotic minipump injection. In addition to
increase in the excitability of VTA DA neurons, elevated
GluR1 in the VTA may contribute, in part, to the increased
sensitivity to the locomotor stimulating and rewarding
actions of nicotine, as suggested by previous studies
(Carlezon et al, 1997; Carlezon & Nestler, 2002).

In contrast with the VTA, repeated nicotine treatment
did not affect the glutamate receptor subunit levels in the
NAc. Similarly, repeated treatment with cocaine (Churchill
et al, 1999) or amphetamine (Lu et al, 1999) does not
change glutamate receptor subunits levels in the NAc.
Given the importance of NAc in expression of drug sensi-
tization, it is surprising that repeated nicotine treatment
did not change the subunits of glutamate receptor. How-
ever, accumulating evidence shows that nicotinic receptors
within VTA, rather than the NAc, are of major importance
for nicotine's stimulatory actions on behavior and dopamine
release in NAc (Corrigall et al, 1994; Nisell et al, 1994a,
b). Although previous studies have focused on the role of
the mesocorticolimbic system as a mediator for nicotine
addiction, relatively less is known about the role of the
nigrostriatal DA systems. Recent study shows that sti-
mulation of nigrostriatal DA neurons may be involved in
the expression of behavioral sensitization by repeated nico-
tine treatment (Shim et al, 2001). For example, the mag-
nitude of increase in dopamine release in striatum by local
infusion of nicotine is very similar to that observed in NAc

(Shim et al, 2001). In the present study, repeated nicotine
treatment showed only a tendency towards an increase in
GluR1 levels in striatum, but not other glutamate receptor
subunits. In line with this result, no change of MK-801
binding in striatum is observed in chronically nicotine-
treated animals (Shoaib et al, 1997). It has been suggested
that nicotine acts at @7 nAChRs on striatal glutamate
terminals, and then it stimulates dopamine release in vitro
(Kaiser & Wonnacott, 2000) and in vivo (Marchi et al,
2002). Moreover, perfusion of AMPA into the striatum
causes a dose-dependent increase of dopamine release,
which is prevented by AMPA antagonist, indicating that
AMPA receptor may exert an excitatory influence on the
release of dopamine in the striatum (Hernandez et al,
2003). These results raise the possibility that striatum may
be involved in long-term changes following repeated nico-
tine treatment (Shim et al, 2001). However, there was no
significant change in glutamate receptor subunits in medial
prefrontal cortex and substantia nigra by repeated nicotine
treatments. This result suggests that glutamate receptor
subunits in PFC or SN may not be involved with long-term
changes following nicotine treatment. However, we cannot
exclude possible changes in glutamate receptor subunits
after a different paradigm of nicotine injection.

Taken together, the present results demonstrate that
repeated nicotine treatment increases NR1 levels in VTA
similarly to other drugs of abuse, suggesting that elevated
glutamate receptor subunits in the VTA, but not NAc may
be involved the excitation of mesocorticolimbic dopamine
neurons by nicotine. In addition, these results raise the
possibility, although speculative, that elevated glutama-
tergic transmission in the VITA may be implicated in the
increased sensitivity to the locomotor stimulating and re-
warding actions of nicotine.
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