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Spectra of nonlinear shallow water waves
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Abstract : The process of the nonlinear shallow water wave transformation in a basin of a constant depth is
studied. Characteristics of the first breaking of the wave are analyzed in details. The Fourier spectrum and
steepness of the nonlinear wave are calculated. It is shown that the spectral amplitudes can be expressed using
the wave front steepness, which allows the practical estimations.
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1. Introduction

The process of the nonlinear wave evolution in the shal-
low water resulting in the wave breaking is well-known,
and it can be described analytically in the framework of the
nonlinear shallow-water theory (see, for instance, books:
Stoker, 1957: Whitham, 1974; Engelbrecht et al., 1988;
Voltsinger et al., 1989; Arseniev et al., 1991; Tan, 1992).
Mathematically, the wave breaking can be considered as
the crossing of the characteristics of the hyperbolic system
for the shallow water (gradient catastrophe). Many obser-
vations of the wave breaking and its transformation into
shock wave or undular bore were made during tsunami
events including the 1983 event in the East (Japan) Sea; see
Figure 1 taken from Shuto (1985). The increase of the
steepness of the tsunami wave front can also be obtained in
numerical simulation of the tsunami wave propagation on
long distances (Zahibo et al., 2006) and predicted theoreti-

cally (Hammack, 1973; Ostrovsky and Pelinovsky, 1976;
Murty, 1977; Pelinovsky, 1982). This phenomenon of
steepness increase is also observed when sea waves enter
the river mouths (Pelinovsky, 1982; Tsuji et al., 1991),
straits, or channels (Pelinovsky and Troshina, 1994; Wu
and Tian, 2000; Caputo and Stepanyants, 2003). Mean-
while, we do not know any publications where the charac-
teristics of the nonlinear deformed wave such as steepness,
spectrum and location of the breaking point have been ana-
lyzed in detail. In this paper, we shall analyze the nonlinear
deformation of the shallow water wave in a basin of a con-
stant depth without wave amplitude limitation. This article
is organized as follows. In section 2, the spatial evolution of
the nonlinear deformed wave and the characteristics of the
first breaking are analyzed. In section 3, the wave steepness
and the Fourier spectrum of the nonlinear deformed peri-
odic wave are studied. In section 4 we present the conclu-
sions.

*Physics Department, University of Antilles Guyane, Pointe-a-Pitre, Guadeloupe, France
** Applied Mathematics Department, State Technical University, and Department of Nonlinear Geophysical Processes, Institute of Applied

Physics, Nizhny Novgorod, Russia

**+*Corresponding author, Applied Mathematics Department, State Technical University, and Department of Nonlinear Geophysical
Processes, Institute of Applied Physics, Nizhny Novgorod, Russia: pelinovsky@hydro.appl.sci-nnov.ru



356 Narcisse Zahibo, Ira Didenkulova, and Efim Pelinovsky

et - 2w

-,

Fig. 1. Wave shapes of the 1983 tsunami observed on the Jap-
anese coast (Shuto, 1985).

2. Spatial Evolution of the Shallow Water Wave

The basic equations of the nonlinear shallow water the-
ory can be written in the following form (Stoker, 1955):
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where 4 is the water level displacement,  is the horizon-
tal velocity of water flow, g is the gravitational accelera-
tion and 4 is the unperturbed water depth assumed to be
constant.

in the unidirectional wave the flow velocity depends on
the water displacement only, and after substitution » = u(h)
in (1), the relation between  and / can be found explicitly

u=2(Jg(h+n)-Algh) )

(for definiteness, we consider waves propagating in pos-
itive direction, x > 0). Using this assumption, the system
(1) can be reduced to the first-order quasi-linear partial
differential equation (Whitham, 1974; Voltsinger et al.,
1989).
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where the wave speed (or characteristic speed), V' is
V(1) = 3./g(h+ 1)-2/gh @

It is important to mention that equation (3) is an exact
equation and it is valid formally for the waves of an arbi-
trary amplitude if dispersion and dissipation are neglected.

We will solve equation (3) with boundary condition 7y,
x = 0) = no(¢), which is typical for the cases when the wave
is generated in the laboratory tank by the wavemaker. Thus,
the solution of equation (3) is

X x
x,t =n(!——)),or t—-—=—=1(1) s
where #(h) is an inverse function to /(f) which is deter-
mined by the wavemaker. First of all, it is important to
mention that the wave may propagate from the wave-
maker in the positive direction x > 0 only if

5
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and, therefore, wave trough should not be deep.

The implicit formula (5) describes a simple or Riemann
wave, which is well known in nonlinear acoustics (Rudenko
and Soluyan, 1977; Engelbrecht et al., 1988; Gurbatov et
al., 1991). This solution describes the nonlinear deforma-
tion of the wave with distance; the steepness of its face
slope increases with distance. The time derivative of the
wave profile can be calculated in the explicit form

oq__ dnydr

b v—— ™
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On the face slope (Gh/8> 0) the time derivative dV 7/dt is
negative, and the denominator in (6) decreases with dis-
tance; the time derivative of the wave profile increases
and tends to infinity at distance x=X. The breaking length
(nonlinearity length) which characterizes the first break-
ing equals to

1

X
max(—dV /dr)

®
Therefore, the wave begins to break at the point on the
wave profile where the inverse speed derivative reaches
its maximum, and this point in general does not coincide
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Fig. 2. Location of the breaking point in trough on the shallow
water wave.

with the point of the wave profile with the maximum
steepness. As a detailed example, the initial sinusoidal
shape of the generated wave will be analyzed. Such a
wave, h(f)=a sin(wf), has the maximum derivative
equal to aw in the wave point with the zero displacement
of the water level. The breaking begins in the trough, and
the phase (8= wt) and displacement ({'=m/h, 7:=a
sind) of the breaking point (see Figure 2 for definitions)
depend on the wave amplitude (4 =a/h) through the
algebraic dimensionless expressions.
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These characteristics are shown in Figures 3 and 4. At

small wave amplitudes the first breaking appears in the
wave on the zero level (unperturbed fluid surface), and in
this case the following asymptotic formulas can be used
to estimate displacement and phase of the breaking point.
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Fig. 3. Displacement at the breaking point versus the wave
amplitude.
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Fig. 4. Phase of the breaking point versus the wave amplitude.

When the wave amplitude approaches the critical value
(6), the breaking point is shifting to the end of the wave
trough.

=2 g T
gr-d=3, O=3 (11

The distance the wave travels from wavemaker to the
breaking point (breaking length) can be found from (8)

2 TG T =2
of 34cosf (12)

where expressions (9) should be used. In fact, we intro-
duce the breaking time, 7= X/(gh)"? reducing the number
of the dimensional quantities. The breaking time decreases
when the wave amplitude increases (Figure 5) and tends
to zero at wave amplitude tends to its critical value 5/9.
Thus, the wave of large amplitude breaks near the wave-
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Fig. 5. Breaking time versus the wave amplitude.
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maker and in fact does not propagate. For weak ampli-
tude waves the breaking time is big, and it can be described
by the asymptotic formula

oT~= (13)

Taking into the account the importance of this formula
for practice let us give it in a dimensional form

= 2lghh _ Ak (14)
dwa 3ma

where the wavelength, A is determined by the linear dis-
persion relation of long waves

,1=3’—’%@ (15)

The weak amplitude wave has to propagate a long dis-
tance of many wavelengths before the nonlinear effects
become significant and the wave breaks.

3. The Wave Steepness and Fourier Spectrum

The wave steepness is the measured characteristics of the
wave field important for applications, and it can be calcu-
lated exactly from (5).

on_1oy_ V (nydnyds

(16)
Ox VOt V1+xdv'\(ny)dr

The maximum steepness is achieved at the point of wave
profile where V! has the maximum time derivative; the
first breaking occurs at this point. Taking into the account
the definition of the breaking length (8) from (16) fol-
lows the expression for maximum steepness.

%0 a7
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s =max(dndx) =

where s0=07n,/0x = V-'One/dr is the initial steepness of

the wave in the point #+. The maximum steepness

increases very rapidly in the vicinity of the breaking point, see

Figure 6. The minimum steepness is achieved on the

back face of the wave, and it is varied with distance as
So

= min(Jnp/ &) = ——, (18)

g 1+x/X

min

The minimum steepness reduces with distance and it is
half of the initial steepness at the breaking point. The
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Fig. 6. The wave steepness versus the distance from wave-
maker.

steepness of the nonlinear deformed wave can be calcu-
lated similarly for other points on the wave profile.

For practice it is important to know the frequency spec-
trum of the wave field. In general form the Fourier integral
can be written in the explicit form (Pelinovsky, 1976).

S(w) = [nlx,Hexp(-iwt)dt

= %I‘%)exp(—iw[ﬁx/ V(no)Ddr (19)
It is impossible to calculate this integral analytically even
for monochromatic initial disturbances. Let us consider
here the case of weak, but finite amplitudes when the
wave propagates on long distances without breaking.
Using the Taylor’s series for inverse velocity V-(h)=(gh)"2
(1-3n/2h), the integral (19) can be calculated exactly and
the wave field at any distance from the wavemaker is

n(t,x)= Y A (x)sin(noft—x/Jghl)
1

n=

_4hgh s ljn(%l)sin(na)[t—x/(@)]) 20)
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where J, is the Bessel function of n-order. Spectral
amplitudes can be re-written in the following form using
the same accuracy for the breaking length (14).

4,69 =2a2%5,(%) @

The amplitudes of high harmonics grow with distance
from the wavemaker, and the amplitude of basic harmon-
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Fig. 7. Harmonic amplitudes versus the distance from the
wavemaker (first to eighth harmonics are displayed).

ics decreases with distance from the wavemaker because
the energy transfers to the high harmonics (Figure 7). It
is important to mention that harmonic amplitudes are rel-
atively weak even at the breaking point and decrease
with the increase of harmonic number.

In oceanic conditions the distance from the wave source
is unknown. It is more useful to have the relationship
between the harmonic amplitudes and the wave steepness.
Using (17) for maximum steepness, the formula (21) can be
written as

A(s)=—22 g (n[l —sﬂ) 22)

n(1—s4/5) "

The relationship between the harmonic amplitudes and
wave steepness is displayed in Figure 8.
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Fig. 8. Harmonic amplitudes versus maximum wave steepness.
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Fig. 9. Limited spectrum of the shallow water wave in the vicin-
ity of the breaking point (solid line — asymptotic #71%).

It can be observed that for large values of the wave steep-
ness the harmonic amplitudes tend to constant values. This
limited spectrum of the shallow water wave (see Fig. 9) does
not depend on the initial wave steepness

4,=247 () 23)
n

This function is very well approximated by the power
asymptotic, n™'3, presented in Figure 9 by solid line. The
spectrum of the nonlinear nondispersive wave field has
been theoretically studied in (Gurbatov et al., 1991) in
detail. According to the theory, the asymptotic @2
appears in the vicinity of the breaking point and this is
close to the approximated curve (23) calculated for the
periodic waves. After the wave breaking, the asymptotic
o7 in high-frequency range is forming; this corresponds
to the “jump” functions.

4. Conclusion

The behavior of the nonlinear shallow-water wave gen-
erated by the wavemaker is discussed within the frame-
work of the exact solution in the form of the Riemann
(simple) wave. It is shown that the initial sinusoidal wave
can propagate as the smooth wave only if its amplitude is
consistent with condition a < 5 h/9, where 4 is water depth.
The wave begins to break at the point on the wave profile
where the local value of the inverse velocity of propagation
is maximal. The breaking length is calculated; it decreases
when the wave amplitude increases. The steepness and the
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spectrum of the nonlinear deformed wave are calculated in
the explicit form. The spectral amplitudes of the wave har-
monics can be expressed in terms of the local value of the
maximum steepness of wave front. The Fourier spectrum
has the universal shape for very steep waves. These esti-
mates of the wave spectrum can be used in the engineering

practice.
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