Parabolic Wave Equations Based on $Pad{\acute{e}}$ Approximants - Model Applicable to Incidence Angle $80^{\circ}$

$Pad{\acute{e}}$ 근사에 의한 포물형 파랑 근사식 - 입사각 $80^{\circ}$까지 적용 모형

  • 서승남 (한국해양연구원 연안개발연구본부)
  • Published : 2007.08.31

Abstract

Parabolic approximation wave models based on $Pad{\acute{e}}$ approximants are presented of which the $Pad{\acute{e}}$(15, 15) is shown to be applicable to incidence angle $80^{\circ}$ in comparison with the exact solution of a constant sloping bed. After introducing a systematic way of the derivation to the parabolic wave equation, parabolic models are obtained in this study upto the 15th order and several numerical results are given to wave transformation in a constant sloping bed.

[ $Pad{\acute{e}}$ ] 근사에 의한 포물형 근사모형들을 제시하였고 $Pad{\acute{e}}$(15, 15) 근사모형은 일정 경사의 지형에 대한 엄밀해와 비교할 때 입사각 $80^{\circ}$까지 적용 가능함을 보였다. 포물형 근사식에 대한 체계적인 유도방법을 보인 후, 본 연구에서는 15차 $Pad{\acute{e}}$ 근사모형까지 나타내었고 일정 경사지형에서의 파랑변형에 대한 수치결과들을 제시하였다.

Keywords

References

  1. 서승남 (1990). 포물형 근사식에 의한 천해파 산정모델. 한국 해안.해양공학회지, 2(3), 134-142
  2. 서승남, 이종찬 (2006). 수정 완경사 파랑식에 대한 포물형 근사식 모형. 한국 해안.해양공학회지, 18(4), 360-371
  3. 서승남, 이동영 (2007a). 포물형 근사식 수치모형의 투과 경계조건. 한국 해안.해양공학회지, 19(2), 170-178
  4. 서승남, 이동영 (2007b). 고차 포물형 파랑 근사식. 한국 해안.해양공학회지, 19(3), 360-371
  5. 해양수산부 (2005). 항만 및 어항 설계기준
  6. Berkhoff, J.C.W. (1972). Computation of combined refractiondiffraction. Proc. 13th Coastal Eng. Conf., 1, 471-490
  7. Berkhoff, J.C.W., Booy, N. and Radder, A.C. (1982). Verification of numerical wave propagation models for simple harmonic linear waves. Coastal Eng., 6, 255-279 https://doi.org/10.1016/0378-3839(82)90022-9
  8. Booij, N. (1981). Gravity waves on water with non-uniform depth and current. Report 81-1, Dept. of Civil Eng., Delft Univ. Technology
  9. Dean, R.G. and Dalrymple, R.A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs, New Jersey
  10. Dalrymple, R.A. and Kirby, J.T. (1988). Models for very wideangle water waves and wave diffraction. J. Fluid Mech., 192, 33-50 https://doi.org/10.1017/S0022112088001776
  11. Dalrymple, R.A., Suh, K.D., Kirby, J.T. and Chae, J.W. (1989). Models for very wide-angle water waves and wave diffraction. Part 2. Irregular bathymetry. J. Fluid Mech., 201, 299-322 https://doi.org/10.1017/S0022112089000959
  12. Jain, M.K., Iyengar S.R.K. and Jain R.K. (1985). Numerical Methods for Scientific and Engineering Computation. Wiley Eastern Ltd., New Delhi, India
  13. Kirby, J.T. (1986a). Higher order approximations in the parabolic equation method for water waves. J. Geophys. Res., 91, 933-952 https://doi.org/10.1029/JC091iC01p00933
  14. Kirby, J.T. (1986b). Rational approximations in the parabolic equation method for water waves, Coastal Eng., 10, 355-378 https://doi.org/10.1016/0378-3839(86)90021-9
  15. Kirby, J.T. and Dalrymple, R.A. (1986). Approximate model for nonlinear dispersion in monochromatic wave propagation. Coastal Eng., 9, 545-561 https://doi.org/10.1016/0378-3839(86)90003-7
  16. Liu, P.L.-F. (1990). Wave transformation. The Sea, B. LeMehaute and D.M. Hanes, eds., Ocean Engineering Science, 9, Wiley, New York, 27-63
  17. Mei, C.C. (1989). The Applied Dynamics of Ocean Surface Waves. World Scientific, Singapore
  18. Mordane, S., Mangoub G., Maroihi K.L. and Chagdali M. (2004). A parabolic equation based on a rational quadratic approximation for surface gravity wave propagation. Coastal Eng., 50, 85-95 https://doi.org/10.1016/j.coastaleng.2003.09.001
  19. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation. Journal of Waterway, Port, Coastal and Ocean Engineering, 119(6), 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  20. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press
  21. Radder, A.C. (1979). On the parabolic equation method for water-wave propagation. J. Fluid Mech., 95, 159-176 https://doi.org/10.1017/S0022112079001397
  22. Wei, G., Kirby, J.T., Grilli, S.T., Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves. J. Fluid Mech., 294, 71- 92 https://doi.org/10.1017/S0022112095002813