DOI QR코드

DOI QR Code

Regulation of Electrochemical Oxidation of Glucose by lonic Strength-Controlled Virtual Area of Nanoporous Platinum Electrode

  • Kim, Jong-Won (Department of Chemistry, Chungbuk National University) ;
  • Park, Se-Jin (Basic Science Research Institute, Sungshin Women's University)
  • Published : 2007.08.28

Abstract

Electrochemical reaction of glucose was regulated by the electrochemically active area of nanoporous platinum, which is controlled by ionic strength. The profile of the oxidation current of glucose vs. ionic strength was identical with that of the electrochemically active area. This result confirms that the nanopores are virtually opened for the electrochemical reaction of glucose when the ionic strength climbs over a specific concentration and implies that the electrochemical reactions on nanoporous electrode surfaces can be controlled by concentration of electrolyte.

Keywords

References

  1. G. S. Attard, P. N. Bartlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, 'Mesoporous platinum films from lyotropic liquid crystalline phases' Science, 278, 838 (1997) https://doi.org/10.1126/science.278.5339.838
  2. K.-S. Choi, E. W. McFarland, and G. D. Stucky, 'Electrocatalytic propoerties of thin mesoporous platinum films synthesized utilizing potential-controlled surfactant assembly' Adv. Mater., 15, 2018 (2003) https://doi.org/10.1002/adma.200304557
  3. Y. Ding, and J. Erlebacher, 'Nanoporous metals with controlled multimodal pore size distribution' J. Am. Chem. Soc., 125, 7772 (2003) https://doi.org/10.1021/ja035318g
  4. C. Ji, and P. C. Searson, 'Synthesis and characterization of nanoporous gold nanowires', J. Phys. Chem. B, 107, 4494 (2003) https://doi.org/10.1021/jp0222200
  5. K. B. Jirage, J. C. Hulteen, and C. R. Martin, 'Effect of thiol chemisorption on the transport properties of gold nanotubule membranes' Anal. Chem., 71, 4913 (1999) https://doi.org/10.1021/ac990615i
  6. A. H. Whitehead, J. M. Elliott, J. R. Owen, and G. S. Attard, 'Electrodeposition of mesoporous tin films' Chem. Commun., 331 (1999)
  7. S. Park, T. D. Chung, and H. C. Kim, 'Nonenzymatic glucose detection using mesoporous platinum' Anal. Chem., 75, 3046 (2003) https://doi.org/10.1021/ac0263465
  8. S. A. G. Evans, J. M. Elliott, L. M. Andrews, P. N. Bartlett, P. J. Doyle, and G. Denuault, 'Detection of hydrogen peroxide at mesoporous platinum microelectrodes' Anal. Chem., 74, 1322 (2002) https://doi.org/10.1021/ac011052p
  9. A. Kucemak, and J. Jiang, 'Mesoporous platinum as a catalyst for oxygen electroreduction and methanol electrooxidation' Chem. Eng. J., 93, 81 (2003) https://doi.org/10.1016/S1385-8947(02)00111-0
  10. P. R. Birkin, J. M. Elliott, and Y. E. Watson, 'Electrochemical reduction of oxygen on mesoporous platinum microelectrodes' Chem. Commun., 1693 (2000)
  11. P. N. Bartlett, and S. Guerin, 'A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases' Anal. Chem., 75, 126 (2003) https://doi.org/10.1021/ac026141w
  12. S. Park, H. Boo, Y. Kim, J.-H. Han, H. C. Kim, and T. D. Chung, 'pH-sensitive solid-state electrode based on electrodeposited nanoporous platinum' Anal. Chem., 77, 7695 (2005) https://doi.org/10.1021/ac050968j
  13. H. Boo, S. Park, B. Ku, Y. Kim, J. H. Park, H. C. Kim, and T. D. Chung, 'Ionic strength-controlled virtual area of meso porous platinum electrode', J. Am. Chem. Soc., 126, 4524 (2004) https://doi.org/10.1021/ja0398316
  14. A. J. Bard, and L. R. Faulkner, 'Electrochemical methods: Fundamentals and Applications', Wiley, New York (2001)
  15. J. O. M. Bockris, and S. U. M. Khan, 'Surface electrochemistry', 321, Plenum, New York (1993)
  16. S. Trasatti, and O. A. Petrii, 'Real surfac-area measurements in electrochemistry', J. Electroanal. Chem., 327, 353 (1992) https://doi.org/10.1016/0022-0728(92)80162-W
  17. B. Gollas, J. M. Elliott, and P. N. Bartlett, 'Electrodeposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10 MHz' Electrochim. Acta, 45, 3711 (2000) https://doi.org/10.1016/S0013-4686(00)00464-3