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Some Results on the Log-linear Regression
Diagnostics*

Miyoung Yang? Jimin Choi? and Choongrak Kim?

Abstract

In this paper we propose an influence measure for detecting potentially
influential observations using the infinitesimal perturbation and the local
influence in the log-linear regression model. Also, we propose a goodness-of-
fit measure for variable selection. A real data set are used for illustration.
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1. Introduction

In fitting a regression model, quantities like estimates of unknown param-
eters and overall goodness of fit can be substantially influenced by one or few
observations. It is, therefore, important for an analyst to be able to identify such
observations and assess their effects on various aspects of analysis. Generally, two
approaches which attempt to quantify the effect of individual observations have
been investigated: assessment by deletion (Cook, 1977; Andrews and Pregibon,
1978; Cook and Weisberg, 1982; Belsley et al., 1980) and assessment by influen-
tial perturbations (Belsley et al., 1980). In the assessment by deletion approach,
one computes the change in some aspects of the fit incurred by deleting one or
more data points. For single deletions (say the i*" observation), the effect is based
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on ,é — B(i), where ﬁ(i) is the estimate of 3 based on n — 1 points without the
ith observation. The infinitesimal perturbation approach is based on the influ-
ence curve, a construction that relies on an appropriate functional of the true
underlying distribution function. Much of the recent work is concerned with only
the perturbation scheme in which the weights attached to individual or groups
of cases are modified. For the most part, the case-weights are restricted to be
either 0 or 1 so that a case is either deleted or retained at full weight. These
ideas are adapted for use in logistic regression by Pregibon (1981). An important
extension of these diagnostic approaches is to nonlinear regression model, where
presumably the effects of outliers and leverage points could be worse. Also, we
need the deletion of more than one observation due to the masking effect (see,
Cook (1977) for details).

On the other hand, a robust regression method is also used to remove the
effect of outlying observations by specifying appropriate influence function. This
method reduces the effect of outlying observations by giving smaller weights than
normal observations at the stage of fitting the model. See Huber (1981), Hampel
et al. (1986) and Maronna et al. (2006) for details on the robust regression
approach.

This paper proposes diagnostic measures which should accompany the “usual”
output from a maximum likelihood fit of a log linear regression model, and sug-
gests a robust goodness of fit measure to select good models. The proposed
measures can be easily extended to other type of generalized linear models such
as logistic regression model and constant coefficient of variation model by spec-
ifying appropriate link function. Since the analytic expression for a diagnostic
in the log linear regression model is not available, one-step estimation is often
used. Also, multiple cases deletion is considered in this paper. In Section 2,
we introduce the model and the relevant notation. Section 3 is concerned with
detecting influential observations and sets via Cook’s distance (Cook, 1977) and
the influence curve approach. A diagnostic measure which can simultaneously be
used for goodness-of-fit and detection of influential observations is suggested in
Section 4, and Section 5 deals with an example to illustrate influence diagnostics
and goodness-of-fit measure. Finally, Section 6 gives remarks and future research.

2. Background and Notation

2.1. Log linear regression model

Consider a sample y' = (y1,¥2, - - -, Yn) of independent random variables such
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that y; has Poisson distribution P(p;) with u; unknown. If we let n = log 1, the
log linear regression model utilizes the relationship

nilegﬂi:X;ﬂ, i=12,...,n,

where xi,...,X, are p-vectors of explanatory variables and (3 is an unknown
parameter vector. The log likelihood for n = X3 is

L(n) =Y {yxiB — ai(@iB) + bi(wi)}, 2.1
i=1

where a;(7;) = p; and b;(y;) = — log(y;!).

2.2. Estimation

The maximum likelihood estimator (MLE) is obtained by maximizing (2.1)
and is a solution to (8/8B8)L(n) = 0. In particular, 3 satisfies the system of

equations:
n
le:](yl—a(m:ﬂ)):o’ J‘Zl’z,""p7
=1

~

where a(x) denotes the first derivative of a(z). Writing e = y — a(X8) =y — f1,
the matrix formulation of the likelihood equations is X'(y — y) = 0.

The MLE ﬁ of B3 is often found using Newton’s method since the likelihood
equations are nonlinear in 3. By the Newton-Raphson method,

Bl =g+ (X'VX) X/ (y—-§), t=0,1,...,
where V be an n x n diagonal matrix with " diagonal v; = fi;. Let
2t =Xg'+Vi(y-3) (2:2)
be a psuedo vector evaluated at the tt* iteration, then
B = (X'VX)TIX'VZ,

At convergence, we have z = X8+ V~Yy —¥), and, therefore, we may write the
MLE of 8 as 3 = (X'VX)~1X'Vz. This method is referred to as the iteratively
reweighted least squares (IRLS) since the form of the estimator resembles the
weighted least squares estimator in the classical linear models.
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3. Regression Diagnostics

3.1. Deletion method

To see the influence of the it* observation on 3, it is useful to evaluate B— ,é(i).
However, the analytic form for 8 — B(;) is not available since iterative methods
are required to obtain 3 and B;. To overcome this difficulty, Pregibon (1981)
suggested a one-step estimator B(li) of ,@(i) for the influence measure of Cook’s
distance (Cook, 1977) type. To be more specific, let fi; = exp(xg,é) and let r be
an n-vector with the i** element r; = e;/ \/V; where e; = y; — §;. Pregibon (1981)
showed that

B(i) = ,3 - *ITH, (3-1)

where h, is the i*" diagonal element of H* = V/2X(X'VX)~1X'V1/2, Pregibon
(1981) discussed the accuracy of this one-step approximation and concluded that
componentwise the approximation tends to underestimate the fully iterated value,
but that this may be unimportant for identifying influential cases. Using (3.1),
it can be easily shown that the one-step version of Cook’s distance is

D; = (,é - ,é'(li))lxlvx((é - B(lz))/P
= r2h%/{(1 - h¥)*p}
{(vi — 0)/V i} h5/{(1 — h;)?p}.

We extend the Cook’s distance to the influence of set of observations in [ =
{i1,--.,im}, then, following to the notation for influential observations X(p is

an (n —m) X p matrix omitting the observations in I. Also, let r; denote the
m-subvector of r corresponding to cases in I and H} is m x m submatrix of H*.
Using this notation, Cook’s distance for the observations in I becomes

Dr=(B- ﬁ(ll))’X’VX((,E} - B(lz))/P
=r/(I~-H)'Hj(I - H)) 'r1/p.
It is necessary to evaluate the influence of set of observations because of masking
effect. However, the computation of Dy is quite expensive as m increases.
3.2. Infinitesimal perturbation method

The infinitesimal perturbation approach in the multiple linear regression y =
X3 + € for the effect of the it* observation is obtained by specifying €; ~
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N(0,0%/w;), where 0 < w; < 1. According to this specification, the normal
equations are modified as X’'W(y —y) = 0 with W = diag{1,...,1,w;,1,...,1},
and one obtains 3 — By, where 3, = (X’'WX)~1X'Wy. Pregibon (1981) showed

that
. (X'X)1x;(1 — w)e;

,B_ﬁw: {1—(1—w)hii}

The effect of infinitesimal perturbations of the variance of the i** data point is

easily obtained by differentiation of ,@w leading to

J - . (X'X)_lxiei
Ful = {1—(1—w)hy)?

ABw =

where hy; is the it* diagonal element of H = X(X'X)"!X’. Note that w; — 0
implies ,@w — ,é(i), therefore, assessment by deletion is a special case of assessment
by infinitesimal perturbations.

In the log linear regression model, consider a set of poisson data {y1,...,yn},
the log likelihood of which may be written as the sum of n individual contribu-
tions, !(x,3;y;). The log likelihood function may be expressed as

Lu(n) =Y wil(xiB; ). (3.2)
=1

For the infinitesimal perturbation of the " observation, let

w ifj=1 |
w; =
5 =1 1 otherwise,

with 0 < w < 1. Then, the MLE of 3 becomes a function of w, and this is
equivalent to solving the equation: X'W(y — y) = 0. By the Newton-Raphson
iteration, we have

B+ (w) = B'(w) + (X'VIPWVI2X)TIX'W(y - §), (3.3)

and, after one-step, equation (3.3) becomes
,Bl(w) — (lel/Zwvl/Zx)—lxlvl/Zwvl/Zz-

Pregibon (1981) showed that,

4 (X’VX)’lxi(l — w)ei
B =B
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Note that w = 0 corresponds to deleting the it* observation, and w = 1 corre-
sponds to the usual maximum likelihood fit. The influence of the i** observation
can be evaluated at various values of w. Based on the motivation by the local in-
fluence (Cook, 1986) and the replacement measure (Kim, 1996), we can evaluate
the influence of the i*" observation by the derivative of 3 (w) with respect to w

at w =1, t.e., .
A J - X'VX)~- i€:
Alal(w) = %ﬂl(w) = {i -1 _)w))]cl;}z’

and let A3 (1) be the value of AB(w) evaluated at w = 1. Therefore,

ABY 1) = (X'VX) Ixe;. (3.4)

Using (3.4), we can define an influence measure for the i** observation, the one-
step version of influence curve, as

Ri = (AB'(V)YX'VX(AB'(1)/p
= Ti2hii/10 (3.5)
= {(vi — )/ VY b p. |
Also, for the influence of set of observations in I = {41, ...,im}, we have
Ry =riHjr;/p.

The proposed influence measure R; in (3.5) can be interpreted as the generalized
linear model diagnostic version of the local influence and the replacement measure
in the classical linear model diagnostics (see, Kim (1996) for detailed discussion).

4. Goodness of Fit Measures

4.1. Deviance and Pearson’s Chi-square

In the generalized linear models, two important measures for the goodness
of fit are the deviance and the Pearson x? statistics. The deviance is twice the
difference between the maximum log likelihood achievable and that achieved by

the model under investigation. If we denote by § = 6(j1) and § = 6(y) by
estimates of the canonical parameters under the two models, the deviance is

D(y; 1) =2 {vi(6: — 6;) — b(6:) + b(8:)}/ai(9)-
The Pearson x? statistic is defined as

X = (i — )/ V (),
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where V({1) is the estimated variance function for the distribution concerned.

Both the deviance and Pearson x? have exact x? distributions for normal-
theory models, and asymptotic results are available for the other distributions.
However, asymptotic results may not be specially relevant to statistics calculated
from limited amounts of data, and for these either D or x? may prove supe-
rior in its distributional properties. The deviance has a general advantage as a
measure of discrepancy in that it is additive for nested sets of models if maxi-
mum likelihood estimates are used, whereas x? in general is not. However, x?
may sometimes be preferred because of easier interpretation. For the asymptotic
behavior of D or x?, see Pierce and Schafer (1986) and McCullagh and Nelder
(1989).

4.2. A robust goodness of fit measure

In Section 3, we suggested an influence measure R; for the diagnostics on ,3
Let A = ©R;, then A is the total influence of observations on 3. In this sense, A
can be regarded as a goodness of fit measure, and thus it can be used a criterion
for variable selection. If we choose variables such that A is small enough, then
the model based on variables chosen by A would be robust. Note that

A= Xrghfi/p

and

2
i

=) r
therefore A is a weighted version of the Pearson x2. Since the Pearson x? is
usually compared with x? distribution and hY;, = p/n, we better use

Cr=nh=2Y rih
p
than A to compare Cy with x? distribution (see, Pierce and Schafer (1986) for
details). Note that Cj can be used both for the evaluation of each observation
and for the overall goodness of fit since it is a weighted average of the influence
of each observation.

5. Example

Fisher (1949) published data set consisting of 16 measurements of tuberculin
response to four treatments which we call W, XY, Z. These were applied in a
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Latin square design so that the effects were not confounded with type of cow and
site. The data were as follows with the corresponding treatment in Table 5.1
(see, Baker and Nelder (1978) for more details).

Table 5.1: Fisher’s data on tuberculin response

site cow class
1 2 3 4
1 454 (W) 249 (X) 349 (Y) 249 (Z)
2 408 (X) 322(W) 312 (Z) 347 (Y)
3 523 (Y) 268 (Z) 411 (W) 285 (X)
4 364 (Z) 283 (Y) 266 (X) 290 (W)

Fisher believed that the variances of the observations were proportional to
their expectation and that the systematic part of the model was linear on the
log-scale, indicating the use of the log link with Poisson errors. The treatments
were considered as arising from a 2 x 2 factorial arrangement indexed by two
factors A, B in the way described in Table 5.2.

Table 5.2: The treatments indexed by two factors A and B
A

1
B A\
Y

N <N

1
2

We fit the data to the log linear model using the GLIM. Criteria for selecting
best model are three goodness of fit measures: deviance D, Pearson x?2, and the
proposed measure Cy defined in Section 4, and the results are summarized in
Table 5.3. As is clear from the table, the best parsimonious model is

site + cow + B

and three criteria show very similar results.

For the influence of observations in the selected model, we evaluate Dy and
R;. Regard the data set in Table 5.1 as 4 x 4 matrix and apply vec operation
to define the k" observation. For example, 249 is the 5* observation. Table 5.4
shows five largest values for m = 1,2, 3,4 defined in Section 3.1, and observations
4 and 5 seem to be potentially influential, however, they are not so apparent to
be regarded as influential. Other observations detected when m = 3,4 are due
to the swamping phenomenon, but are not influential. To see the effect of the
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Table 5.3: Goodness of fit measures D, x2, and Cjy

model df deviance(D) Pearson (x°) Cax  x’4/(.95)
null(1) 15 265.30 278.73 278.73 25.00
A 14 265.28 278.69 278.69 23.68
B 14 203.09 210.85 210.84 23.68
A+B 13 203.07 210.79 212.72 22.36
site 12 232.38 238.09 228.60 21.03
cow 12 91.76 92.43 98.51 21.03
site+A 11 232.37 238.14 238.66 19.68
cow+A 11 91.74 92.39 98.16 19.68
site+B 11 170.17 177.60 174.73 19.68
cow+B 11 29.55 29.47 30.78 19.68
site+ A+B 10 170.15 177.45 175.18 18.31
cow+A+B 10 29.53 29.48 30.68 18.31
site+cow 9 58.84 58.78 55.27 16.92
site+-cow+A 8 58.82 58.74 56.01 15.51
site+cow+B 8- 141 1.42 1.35 15.51
sitetcow+A+B 7 1.40 1.41 1.30 14.07

Table 5.4: Five largest values of Dy and Ry for m=1,2,3,4

m set Dy set R;
1 4 0.05142 4 0.02078
5 0.02540 5 0.01646

1 0.01779 11 0.01005
14 0.01719 14 0.00950

11 0.01491 12 0.00626

2 45 009720 4,5  0.04248
49 009588 11,14  0.03464
11,04  0.09196 4,11  0.03103
516  0.07955 5,16  0.03095

14 007940 14  0.02840

3 14,9 022912 4516  0.05617
245 021168 4,511  0.04538
1,36 0.18618 459  0.04491
1,69 0.15808 5,11,14 0.04456
4516 014920 4,58  0.04289

4 1369 055832 459,16 0.05931
1,4,6,9 044201 456,16 0.05720
2,4,516 0.42023 4,5,11,14 0.05712
1,2,3,6 040121 4,5,15,16 0.05539
1,4,9,13 0.33831 4,58,16 0.05533




410 Miyoung Yang, Jimin Choi and Choongrak Kim

Table 5.5: Comparison of estimates based on the full data set and the data set

after deleting the 4" observation, respectively
full data set case 4 deleted
parameter estimate S.E.  p value estimate S.E. p value
intercept  5.4753  0.0404 <.0001 5.4747  0.0404 <.0001
site 1 0.0480 0.0403 0.2340 0.0337  0.0443 0.4468
site 2 0.1438  0.0394 0.0003 0.1428 0.0394 0.0003

site 3 0.1816  0.0391 <gp001 0.1797  0.0392 <.0001
cow 1 0.3967  0.0379 <.0001 0.3974 0.0379 <.0001

cow 2 -0.0427 0.0418 0.3062 -0.0570  0.0457 0.2125
cow 3 0.1289 0.0401 0.0013 0.1295 0.0401 0.0012
B1 0.2095 0.0277 <.0001 0.2171  0.0295 <.0001

influential observation (here we take the 4** observation) on estimates, we list
both estimates based on the full data set and the data set after deleting the 4%"
observation, respectively, in Table 5.5. We see that some estimates (especially
“sitel”) change significantly even though we delete just one observation.

6. Remarks and Future Research

In this paper, we mentioned two issues in the log linear model; regression
diagnostics and goodness of fit measure. In the log linear regression diagnostics,
influence measures based on the influence curve derived from the infinitesimal per-
turbation approach, and the replacement method. These measures can be easily
extended to the subset deletion for detecting the masking effect. We compared
these measures with the one-step version of the Cook’s distance. As goodness of
fit measures in the generalized linear models, the deviance and the Pearson x?
are often used. We suggest a robust goodness of fit measure.

For future research, two issues should be studied. First, some reference values
for the influence measure Ry is worth pursuing. It can be a function of the number
of observations, the number of independent variables, and the number of cases
deleted. Possible approaches are a Monte Carlo study in the linear regression
diagnostics by Kim and Storer (1996) and a bootstrap approach in the nonlinear
or nonparametric model by Kim et al. (2001). Second, we need more justifications
for the robust goodness of fit measure although it has a meaning of minimizing
the sum of case influences. For example, sensitivity analysis to see the robustness
of Cp should be done.
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