DOI QR코드

DOI QR Code

Controlled Release of Nifedipine in Multi-layered Granule System

다중층 과립 시스템에서 니페디핀의 방출 제어

  • Lee, Soo-Young (Fusion Bio Research Center, Korea Research Institute of Chemical Technology) ;
  • Youn, Ju-Yong (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Kim, Byung-Soo (Fusion Bio Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Moon-Suk (Fusion Bio Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Bong (Department of Polymer Engineering, Pukyong National University) ;
  • Khang, Gil-Son (BK-21 Polymer BIN Fusion Research Team, Chonbuk National University) ;
  • Lee, Hai-Bang (Fusion Bio Research Center, Korea Research Institute of Chemical Technology)
  • 이수영 (한국화학연구원 융합바이오기술연구센터) ;
  • 윤주용 (전북대학교 고분자나노공학과) ;
  • 김병수 (한국화학연구원 융합바이오기술연구센터) ;
  • 김문석 (한국화학연구원 융합바이오기술연구센터) ;
  • 이봉 (부경대학교 고분자공학과) ;
  • 강길선 (전북대학교 고분자나노공학과) ;
  • 이해방 (한국화학연구원 융합바이오기술연구센터)
  • Published : 2007.08.21

Abstract

Multi-layered granules were prepared by a fluidized-bed coater and uniformed granules were obtained with a size range between $950{\sim}1000{\mu}m$ in diameter. The granule system was composed of three layers, i.e. seed layer with sugar sphere bead and a water-swellable polymer, middle layer with a drug, solubilizer and polymer, and the top layer of porous membrane with a polymeric binder. The aim of this work is to find out the dependence of a drug dissolution rate on the amount of a water-soluble binder and a solubilizer in the granule system. The results showed that the higher amount of hydrophilic binder in the porous membrane, gave the bigger pore size and porosity and made faster dissolution rate and also the higher amount of solubilizer in drug layer enhanced the dissolution rate of drug.

Keywords

References

  1. K. Nakamura, E. Nara and Y. Akiyama, Development of an oral sustsained release drug delivery system utilizing pH-dependent swelling of carboxyvinyl polymer, J. Control. Rel., 111, 309 (2006) https://doi.org/10.1016/j.jconrel.2005.12.018
  2. M. Efentakis, S. Koligliati and M. Vlachou, Design and evaluation of a dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release, Int. J. Pharm., 311, 147 (2006) https://doi.org/10.1016/j.ijpharm.2005.12.026
  3. J. Hamdani, A. J. Moes and K. Amighi, Development and in vitro evaluation of a novel floating multiple unit dosage form obtained by melt pelletization, Int. J. Pharm., 322, 96 (2006) https://doi.org/10.1016/j.ijpharm.2006.05.052
  4. F. Siepmann, J. Siepmann, M. Walther, R. J. MacRae and R. Bodmeier, Blends of aqueous polymer dispersions used for pellet coating: Importance of the particle size, J. Control. Rel., 105, 226 (2005) https://doi.org/10.1016/j.jconrel.2005.03.028
  5. L. Lui, G Khang, J. M. Rhee and H. B. Lee, Sandwiched osmotic pump tablet for controlled release of water-insoluble drug, Acta Pharm. Sinica, 38(8), 620 (2003)
  6. L. Liu, G. Khang, J. M. Rhee and H. B. Lee, Sandwiched osmotic tablet core for nifedipine controlled delivery, Bio-Med. Mater. Eng., 9, 297 (1999)
  7. G. Khang, J. Ku, B. Lee and H. B. Lee, Controlled release of nifedipine by osmotic tablet, Biomater. Res., 4, 20 (2000)
  8. L. Liu, J. Ku, G. Khang, B. Lee, J. M. Rhee and H. B. Lee, Nifedipine controlled delivery by sandwiched osmotic tablet system, J. Control. Rel., 68, 145 (2000) https://doi.org/10.1016/S0168-3659(00)00243-1
  9. S. C. Jeong, Y. H. Cho, S. Y. Lee, B. Lee, M. S. Kim, G. Khang and H. B. Lee, Preparation and release characterization of osmotic granule nifedipine delivery system, J. Kor. Pharm. Sci., 36, 11 (2006)
  10. S. C. Jeong, Y. H. Cho, M. S. Kim, B. Lee, G. Khang, J. M. Rhee and H. B. Lee, The effect of amount of osmotic agent and the type of binder in membrane on drug release from osmotic granule delivery system for nifedipine, Polymer (Korea), 30, 112 (2006)
  11. S. C. Jeong, S. K. Chon, Y. H. Cho, M. S. Kim, B. Lee, G. Khang and H. B. Lee, The effect of bead size and drug solubility on drug release from osmotic granule delivery system for nifedipine, Polymer(Korea), 29, 288 (2005)
  12. I. Niopas and A. C. Daftsios, Determination of nifedipine in human plasma by solid-phase extraction and high-performance liquid chromatography: validation and application to phannacokinetic studies, J. Pharm. Biomed. Anal., 32, 1213 (2003) https://doi.org/10.1016/S0731-7085(03)00162-6
  13. R. C. Rowe, The effect of the molecular weight of ethyl cellulose on the drug release properties of mixed films of ethyl cellulose and hydroxypropylmethylcellulose, Int. J. Pharm., 29, 37 (1986) https://doi.org/10.1016/0378-5173(86)90197-3
  14. A. Wade and P. J. Weller (EDs.), Handbook of Pharmaceutical Excipients, Am. Pharm. Assoc., (1994)
  15. H. Ho, C. N. Chen and M. T. Sheu, Influence of pluronic F-68 on dissolution and bioavailability characteristics of multiple-layer pellets of nifedipine for controlled release delivery, J. Control. Rel., 68, 433 (2000) https://doi.org/10.1016/S0168-3659(00)00281-9
  16. H. S. A. Auda, T. A. Najjar, K. I. Al-Khamis, B. M. Al-Hadiya, N. M. Ghilzai and N. F. Al-Fawzan, Liquid chromatographic assay of nifedipine in human plasma and its application to pharmacokinetic studies, J. Pharm. Biomed. Anal., 22, 241 (2000) https://doi.org/10.1016/S0731-7085(99)00258-7
  17. M. M. Meier, L. A. Kanis and V. Soldi, Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent, Int. J. Pharm., 278, 99 (2004) https://doi.org/10.1016/j.ijpharm.2004.03.005
  18. F. Yanagawa, Y. Onuki, M. Morishita, and K. Takayama, Involvement of fractal geometry on solute permeation through porous poly (2-hydroxyethyl methacrylate) membranes, J. Control. Rel., 110, 395 (2006) https://doi.org/10.1016/j.jconrel.2005.10.015
  19. J. Fujimori, Y. Yoshihashi, E. Yonemochi and K. Terada, Application of Eudragit RS to thermo-sensitive drug delivery systems: II. Effect of temperature on drug permeability through membrane consisting of Eudragit RS/PEG 400 blend polymers, J. Control. Rel., 102, 49 (2005) https://doi.org/10.1016/j.jconrel.2004.09.027
  20. A. Kramar, S. Turk and F. Vrecer, Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films, Int. J. Pharm., 256, 43 (2003) https://doi.org/10.1016/S0378-5173(03)00061-9
  21. Y. Huang, Y. Tsai, W. Yang, J. Chang and P. Wu, Optimization of sustained-release propranolol dosage form using factorial design and response surface methodology, Biol. Pharm. Bull., 27(10), 1626 (2004) https://doi.org/10.1248/bpb.27.1626
  22. S. Yamane, K. Takayama and T. Nagai, Effect of fractal dimension on drug permeation through porous ethylcellulose films, J. Control. Rel., 50, 103 (1998) https://doi.org/10.1016/S0168-3659(97)00121-1
  23. N. K. Ebube and A. B. Jones, sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers, Int. J. Pharm., 272, 19 (2004) https://doi.org/10.1016/j.ijpharm.2003.11.020
  24. R. Barreiro-Iglesias, C. Alvarez-Lorenzo and A. Concheiro, Controlled release of estradiol solubilized in carbopol/ surfactant aggregates, J. Control. Rel., 93, 319 (2003) https://doi.org/10.1016/j.jconrel.2003.08.015
  25. S. R. Levis and P. B. Deasy, Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose, Int. J. Pharm., 230, 25 (2001) https://doi.org/10.1016/S0378-5173(01)00843-2