Changes of Brain Natriuretic Peptide Levels according to Right Ventricular HemodynaMics after a Pulmonary Resection

폐절제술 후 우심실의 혈역학적 변화에 따른 BNP의 변화

  • Na, Myung-Hoon (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University) ;
  • Han, Jong-Hee (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University) ;
  • Kang, Min-Woong (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University) ;
  • Yu, Jae-Hyeon (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University) ;
  • Lim, Seung-Pyung (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University) ;
  • Lee, Young (Department of Thoracic and Cardiovascular Surgery, College of Medicine, Chungnam National University) ;
  • Choi, Jae-Sung (Department of Thoracic and Cardiovascular Surgery, Dongguk University International Hospital) ;
  • Yoon, Seok-Hwa (Department of Anesthesiology, College of Medicine, Chungnam National University) ;
  • Choi, Si-Wan (Department of Internal Medicine, College of Medicine, Chungnam National University)
  • 나명훈 (충남대학교 의과대학 흉부외과학교실) ;
  • 한종희 (충남대학교 의과대학 흉부외과학교실) ;
  • 강민웅 (충남대학교 의과대학 흉부외과학교실) ;
  • 유재현 (충남대학교 의과대학 흉부외과학교실) ;
  • 임승평 (충남대학교 의과대학 흉부외과학교실) ;
  • 이영 (충남대학교 의과대학 흉부외과학교실) ;
  • 최재성 (동국대학교일산불교병원 흉부외과) ;
  • 윤석화 (충남대학교 의과대학 마취통증의학교실) ;
  • 최시완 (충남대학교 의과대학 내과학교실)
  • Published : 2007.09.05

Abstract

Background: The correlation between levels of brain natriuretic peptide (BNP) and the effect of pulmonary resection on the right ventricle of the heart is not yet widely known. This study aims to assess the relationship between the change in hemodynamic values of the right ventricle and increased BNP levels as a compensatory mechanism for right heart failure following pulmonary resection and to evaluate the role of the BNP level as an index of right heart failure after pulmonary resection. Material and Method: In 12 non small cell lung cancer patients that had received a lobectomy or pnemonectomy, the level of NT-proBNP was measured using the immunochemical method (Elecsys $1010^{(R)}$, Roche, Germany) which was compared with hemodynamic variables determined through the use of a Swan-Garz catheter prior to and following the surgery. Echocardiography was performed prior to and following the surgery, to measure changes in right ventricular and left ventricular pressures. For statistical analysis, the Wilcoxon rank sum test and linear regression analysis were conducted using SPSSWIN (version, 11.5). Result: The level of postoperative NT-proBNP (pg/mL) significantly increased for 6 hours, then for 1 day, 2 days, 3 days and 7 days after the surgery (p=0.003, 0.002, 0.002, 0.006, 0.004). Of the hemodynamic variables measured using the Swan-Ganz catheter, the mean pulmonary artery pressure after the surgery when compared with the pressure prior to surgery significantly increased at 0 hours, 6 hours, then 1 day, 2 days, and 3 days after the surgery (p=0.002, 0,002, 0.006, 0.007, 0.008). The right ventricular pressure significantly increased at 0 hours, 6 hours, then 1 day, and 3 days after the surgery (p=0.000, 0.009, 0.044, 0.032). The pulmonary vascular resistance index [pulmonary vascular resistance index=(mean pulmonary artery pressure-mean pulmonary capillary wedge pressure)/cardiac output index] significantly increased at 6 hours, then 2 days after the surgery (p=0.008, 0.028). When a regression analysis was conducted for changes in the mean pulmonary artery pressure and NT-proBNP levels after the surgery, significance was evident after 6 hours (r=0.602, p=0.038) and there was no significance thereafter. Echocardiography displayed no significant changes after the surgery. Conclusion: There was a significant correlation between changes in the mean pulmonary artery pressure and the NT-proBNP level 6 hours after a pulmonary resection. Therefore, it can be concluded that changes in NT-proBNP level after a pulmonary resection can serve as an index that reflects early hemodynamic changes in the right ventricle after a pulmonary resection.

배경: 폐절제술이 우심실 기능에 미치는 영향과 BNP (brain natriuretic peptide)의 관계에 대해서는 아직 자세히 알려져 있지 않다. 본 연구에서는 폐절제술 후 변화하는 혈역학적 수치와 우심부전의 보상기전으로서 증가하는 BNP의 관계에 대해서 알아보고 BNP가 폐절제술 후의 우심부전의 지표가 될 수 있는지를 확인하고자 하였다. 대상 및 방법: 폐암으로 폐엽절제술과 전폐절제술을 시행한 12명의 환자에서 면역화학적 방법(Elecsys $1010^{(R)}$, Roche, Germany)을 이용하여 수술 전후의 NT-proBNP 수준을 측정하고, Swan-Ganz 카테터로 수술 전후에 혈역학적 지표를 측정하여 비교하였으며 수술 전후에 심초음파를 시행하여 우심실 및 좌심실압 등의 변화를 비교하였다. 통계처리는 SPSSWIN(version 11.5)를 이용한 Wilcoxon rank sum test와 linear regression을 이용하였다. 결과: NT-proBNP 수준은 수술 전과 비교하여 수술 후 6시간, 수술 후 1일과 2일, 3일, 7일째에 유의하게 증가하였다(p=0.003, 0.002, 0.002, 0.006, 0.004). Swan-Ganz 카테터를 통한 혈역학적 변수 중에서는 평균 폐동맥압이 수술 전과 비교하여 수술 직후와 수술 후 6시간, 수술 후 1일, 2일, 3일째에 유의하게 증가하였으며(p=0.002, 0.002, 0.006, 0.007, 0.008), 평균 우심실압력은 수술 직후와 수술 후 6시간, 수술 후 1일과 3일에서 유의하게 증가하였다(p=0.006, 0.009, 0.044, 0.032). 폐혈관저항지수[폐혈관저항지수=(평균폐동맥압-평균폐동맥쐐기압)/심박출계수]는 수술 후 6시간, 수술 후 2일에서 유의한 증가가 있었다(p=0.008, 0.028). 평균폐동맥압의 수술 후 변화와 NT-proBNP 변화를 회기분석하였을 때 수술 후 6시간에서 유의성이 있었으며(r=0.602, p=0.038) 이후에는 유의성이 없었다. 심초음파 결과는 수술 전후를 비교하여 유의성이 없었다. 결론: 폐절제술 후 6시간의 폐동맥압의 변화와 NT-proBNP의 변화가 유의성이 있었다. 따라서 폐절제술 후 NT-proBNP의 변화는 폐절제술 후 우심실의 조기 혈역학적 변화를 반영하는 척도가 될 수 있으리라 판단된다.

Keywords

References

  1. Nisimura H, Haniuda M, Morimoto M, Kubo K. Cardiopulmonary function after pulmonary lobectomy in patients with lung cancer. Ann Thorae Surg 1993;55:2477-84
  2. Reed CE, Dorman BH, Spinale FG. Mechanisms of right ventricular dysfunction after pulmonary resection. Ann Thorac Surg 1996;62:225-32 https://doi.org/10.1016/0003-4975(96)00258-5
  3. Tayama K, Takamori S, Mitsuoka M, et al. Natriuretic peptide after pulmonary resection. Ann Thorac Surg 2002;73:1582-6 https://doi.org/10.1016/S0003-4975(02)03417-3
  4. Sagnella GA. Measurement and importance of plasma brain natriuretic peptide and related peptides. Ann Clin Bioehem 2001;38:83-93 https://doi.org/10.1258/0004563011900317
  5. Bay M, Kirk V, Pamer J, et al. NT-proBNP: a new diagnostic screening tool to differentiate between patients with normal and reduced left ventricular function. Heart 2003;89:150-4 https://doi.org/10.1136/heart.89.2.150
  6. Costello-Boerrigter LC, Boerrigter G, Redfield MM, et al. Amino-terminal pro B type natriuretic peptide and B type natriuretic peptide in the general community. J Am Coll Cardiol 2006;47:345-53 https://doi.org/10.1016/S0735-1097(06)00822-9
  7. Pfister R, Scholz M, Wielckens K, Erdmann E, Schneider CA. Use of NT-proBNP in routine testing and comparison to BNP. Eur J Heart Fail 2004;6:289-93 https://doi.org/10.1016/j.ejheart.2003.12.012
  8. Miechen WV, Demedts M. Cardiopulmonary function after lobectomy or pneumonectomy for pulmonary neoplasm. Respir Med 1989;83: 199-206 https://doi.org/10.1016/S0954-6111(89)80032-0
  9. Okada M, Ota T, Okada M, Matsuda H, Okada K, Ishii N. Right ventricular dysfunction after major pulmonary resection. J Thorac Cardiovasc Surg 1994;108:503-11
  10. Kowalewski J, Brocki M, Dryjanski T, Kapron K, Barcikowski S. Right ventricular morphology and function after pulmonary resection. Eur J Cardiothorac Surg 1999; 15:444-8 https://doi.org/10.1016/S1010-7940(99)00032-9
  11. Grewal J, Chandavimol M, Ignazewski A. B-type natriuretic peptide: a new marker for congestive heart failure. B C Med J 2004;46:24-9
  12. Bhatia V, Nayyar P, Dhindsa S. Barin natriuretic peptide in diagnosis and treatment of heart failure. J Postgrad Med 2003;49:182-5
  13. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet 1997;350: 1347-51
  14. Troughton RW, Frampton CM, Yandle TG, Espiner EA, Nicholls MG, Richards AM. Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 2000;355: 1126-30 https://doi.org/10.1016/S0140-6736(00)02060-2
  15. Berger R, Huelsman M, Strecker K, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation 2002;105:2392-7 https://doi.org/10.1161/01.CIR.0000016642.15031.34
  16. Sabatine MS, Morrow DA, de Lemos JA, et al. Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes. Circulation 2002;105: 1760-3 https://doi.org/10.1161/01.CIR.0000015464.18023.0A
  17. Muller C, Laule-Killian K, Frana B, et al. Use of B-type natriuretic peptide in the management of acute dyspnea in patients with pulmonary disease. Am Heart J 2006;151:471-7 https://doi.org/10.1016/j.ahj.2005.03.036
  18. Ishii J, Nomura M, Ito M, et al. Plasma concentration of brain natriuretic peptide as a biochemical marker for the evaluation of right ventricular overload and mortality in chronic respiratory disease. Cli Chim Acta 2000;301: 19-30 https://doi.org/10.1016/S0009-8981(00)00312-0
  19. Leuchte HH, Neurohr C, Baumgartner R, et al. Brain natriuretic peptide and exercise capacity in lung fibrosis and pulmonary hypertension. Am J Respir Crit Care Med 2004;170:360-5 https://doi.org/10.1164/rccm.200308-1142OC
  20. Kruger S, Graf J, Merx MW, et al. Brain natriuretic peptide predicts right heart failure in patients with acute pulmonary embolism. Am Heart J 2004;147:60-5 https://doi.org/10.1016/S0002-8703(03)00528-3