DOI QR코드

DOI QR Code

Microstructural and Magnetic Properties of CoFeB/MgO/CoFeB Based Magnetic Tunnel Junction Depending on Capping Layer Materials

Capping층 재료에 따른 CoFeB/MgO/CoFeB 자기터널접합의 미세구조와 자기저항 특성

  • Chung, Ha-Chang (Division of Materials Science and Engineering, Korea University) ;
  • Lee, Seong-Rae (Division of Materials Science and Engineering, Korea University)
  • 정하창 (고려대학교 공과대학 신소재공학부) ;
  • 이성래 (고려대학교 공과대학 신소재공학부)
  • Published : 2007.08.31

Abstract

We investigated the effects of the capping layer materials on the crystallization of the amorphous top-CoFeB (t-CoFeB) electrode and the magnetoresistance properties of the magnetic tunnel junctions (MTJs). When the hcp(002)-textured Ru capping layer was used, the amorphous t-CoFeB was crystallized to bcc-CoFe(110). The CoFe(110)/Ru(002) texture relation can be minimized the lattice mismatch down to 5.6%. However, when the fine polycrystalline but almost amorphous TiAl or amorphous ZrAl were used, the amorphous t-CoFeB was crystallized to bcc-CoFe(002). When the amorphous capping materials were used, the evolution of the t-CoFeB texture was affected mainly by the MgO(001) texture. Consequently, the M ratios of the annealed MTJ capped with the ZrAl and TiAl (72.7 and 71.8%) are relatively higher than that of the MTJ with Ru capping layer (46.7%). In conclusions, the texture evolution of the amorphous t-CoFeB during the post deposition annealing could be controlled by the crystallinity of the adjacent capping layer and in turn, it affects the TMR ratio of MTJs.

본 연구에서는 CoFeB/MgO/CoFeB 구조를 가지는 자기터널접합에서 capping층 재료의 종류와 열처리 시간에 따른 비정질 top CoFeB 자성층의 결정화 상태 및 자기터널접합의 자기적 특성 변화에 대한 연구결과를 비교 분석 하였다. Hcp(Hexagonal close-packed)의 결정구조를 가지는 Ru(002)를 capping층 재료로 사용한 자기터널접합 박막의 경우에는 열처리 이후 Ru과 인접한 부분의 top CoFeB이 bcc-CoFe(110)로 성장하는 반면, TiAl과 ZrAl을 capping층 재료로 사용한 자기터널접합의 경우는 열처리 이후 top CoFeB이 MgO와 epitaxial하게 bcc-CoFe(002)로 결정성장 하였다. 이로 인해 Ru을 사용한 자기터널접합의 터널자기 저항비(46.7%)보다 약 1.5배 높은 터널자기저항비(TiAl: 71.8%, ZrAl: 72.7%)를 나타내었다.

Keywords

References

  1. Y. S. Choi, K. Tsunekawa, Y. Nagamine, and D. Djayaprawira, J. Appl. Phys., 101, 013907 (2007) https://doi.org/10.1063/1.2407270
  2. W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B, 63, 054416 (2001)
  3. J. Mathon and A. Umersky, Phy. Rev. B, 63, 220403R (2001) https://doi.org/10.1103/PhysRevB.63.220403
  4. S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, Jpn. J. Appl. Phys., 43, L588 (2004) https://doi.org/10.1143/JJAP.43.L588
  5. C. Park, Y.-H. Wang, D. E. Laughlin, and J.-G. Zhu, IEEE Trans. Mag., 42, 2639 (2006)
  6. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, Appl. Phys. Lett., 89, 062507 (2006) https://doi.org/10.1063/1.2335368
  7. J.-O. Song, S.-R. Lee, and H.-J. Shin, IEEE Trans. Magn., 41, 2944 (2005)
  8. S.-R. Lee, C.-M. Choi, and Y. K. Kim, Appl. Phys. Lett., 83, 317 (2003)
  9. X.-G. Zhang and W. H. Butler, Phys. Rev. B, 70, 1724407 (2004)
  10. H. G. Cho, Y. K. Kim, and S.-R. Lee, J. Appl. Phys., 91, 8581 (2002)