Journal of the Korean Statistical Society (2007), 36: 3, pp 357-365

CHARACTERIZATION OF SOME CONTINUOUS
DISTRIBUTIONS BY PROPERTIES OF PARTIAL
MOMENTS

B. ABrRAHAM!, N. UNNIKRISHNAN NAIR? AND P. G. SANKARAN®

ABSTRACT

In this paper we present characterizations of the Pareto, Lomax, expo-
nential and beta models by some properties of their r** partial moment
defined as o,(t) = E[(X — t)*]", where (X —t)* = max(X —t,0). Given
the partial moments at a few truncation points, these results enable us to
calculate the moments at many other points.
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1. INTRODUCTION

Consider a positive random variable X with absolutely continuous distribu-
tion function F(z) and finite moment of order r. Then the rth partial moment
of X about a point t is defined as

a-(t) = E{(X )"}, r=0,1,2,..., (1.1)

where (X —t)* = max(X —t,0). The quantity (X —t)* is interpreted as residual
life in the context of life length studies (Lin, 2003) and the moments (1.1) are used
in actuarial sciences in the analysis of risks (Denuit, 2002). In the assessment of
income tax, ¢t can be taken as the tax exemption level so that (X —t)* becomes the
taxable income. Gupta and Gupta (1983) have shown that o, (t) determine the
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underlying distribution uniquely for any positive real r and therefore information
about partial moments enables model identification.

Like other types of moments, properties of a,(t) can be used to characterize
probability distributions. Chong (1977) established that

a1(t + s)a1(0) = a1 (t)oa(s) (1.2)

is a characteristic property of the exponential law. This result was later extended
by Nair (1987) to the bivariate case. Discrete distributions like geometric, neg-
ative hypergeometric and Waring were characterized by Nair et al. (2000). The
results of Chong (1977) were further strengthened and several new unique prop-
erties of the exponential law were found by Lin (2003). In the present paper we
attempt to supplement the results of Lin (2003) by providing similar characteri-
zations for the Pareto, Lomax, exponential and beta models. Unlike the survival
functions of these distributions which can be deduced from one another through
monotone transformations, the partial moments do not permit such deductions
and therefore separate treatments are required for each distribution.

2. CHARACTERIZATIONS

In this section we present characterizations of several continuous distributions
and deduce many known results as special cases. For the random variable defined
in Section 1

on(t) = /t Yz -ty dF (2.1)

is assumed to be continuous in t, through out the support of X in this paper.

2.1. Pareto distribution

THEOREM 2.1. (a) X follows Pareto distribution with F(z) = 1 — (k/x)*,
z >k >0, where k, a are constants and a > r for some positive integer r, then

ar(t)ar(s) = ar(ar(ts) forallt,s>1. (2.2)

(b) Conversely, if X satisfies (2.2) for some positive integer r, then X follows a
Pareto distribution of the form given in (a).
PROOF. For the Pareto distribution mentioned previously

rl ko¢r=e
a’l‘(t) = (a _ 1)(1.) b}
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where y(™ = y(y — 1)---(y — 7 + 1) is the descending factorial. Thus (2.2) is
satisfied. Conversely, when (2.2) holds we have

G(r,t)G(r,s) = G(r,ts) (2.3)

with G(a,b) = a4(b)/ca(1). The only non-trivial solution of (2.3) is (Aczel, 1966,
p- 39) of the form

G(r,t) =D or a,(t) = ar(1)tP") (2.4)
for some B(r). Since at all continuity points of F(z),
oL (t) = —ray1 (8
with prime denoting differentiation, we have from (2.4)
ar (DB = —pap_ ()T, > 1, (2.5)
In order that (2.5) holds for all ¢ > 0 the exponent of ¢ via
Br)—=1-B(r-1), r=>1

must be zero, otherwise the equation holds only for a fixed number of ¢-values
obtained as the roots of (2.5) which is contradictory to the assumptions of the
theorem. Hence

B(r)—1=06(r-1),

giving the solution by successive reduction as

B(r)=r—a, a=—Po.

Further
ar(t) = o (1)t74. (2.6)
Now, from equation (2.1),
_ _ (-1)r dra,.(:c)
- Fz) = r! dx”
_ (a — 1)(T) —a
= ——T—!——ar(l)x .

Writing k = sup[x|F(z) > 0], the constant o, (1) is evaluated at F(k) = 0 as

7!

ar(l) = mk
and thus _a
F(a:)zl—(%) . a>0.

This completes the proof. O
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REMARK 2.1.

1. Pareto model is characterized by the property of expectations
E[(X — )" )E[(X - 9)*] = E[(X — 1)T]E[(X —ts)"]. (2.7)

2. The property (2.2) implies that for all ¢; > 1,1 =1,2,...,n,

ar(ty)ar(t) - - ar(tn) = [ar (D" ar(tits - - ta). (2.8)

Formulae (2.2), (2.7) and (2.8) gives a method of generating an infinite number
of partial moments given the moments at more than one point of truncation.
However, when the moment at one truncation point alone is known, we can use

[ (O = [or (V)" o (£7) (2.9)

obtained by setting all t; = ¢ in (2.8).
We will now show that (2.9) is also a characteristic property of the Pareto
law.

THEOREM 2.2. The relationship
[ar ()] = Car(t") (2.10)

holds for allt > 1 and all positive integers n, where C is independent of t if and
only if X has Pareto distribution.

PRrROOF. When (2.10) holds for all ¢ > 1, setting t = 1 gives C' = (ar (1)),
which shows that C is independent of . Hence (2.10) is equivalent to

AX(E) = A(t), (2.11)
where A.(t) = ar(t)/ar(1). Setting t = e*, Ar(e*) = gr(u) will lead to the
functional equation

gr(u) = gr(un) for all v and positive integers n.
From Galambos and Kotz (1978), the solution of the last equation is g(u) = eb,

and hence
Aq(t) =t for all real t > 1. (2.12)

That (2.12) leads to the Pareto distribution is shown in Theorem 2.1. The con-
verse follows from the expression for a,(t) and the proof is complete. a
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COROLLARY 2.1. The partial mean satisfies the condition
ol (t) = Con(t")
for all t > 1 and positive integers n, if and only if X follows Pareto distribution.
2.2. Lomax distribution
The Lomax distribution is specified by the distribution function
F(z)=1-0°(z+0)"% o,c>0, (2.13)

for z > 0.
The distribution is important in reliability analysis as one with linearly increasing
(decreasing) failure rate (mean residual life). Its partial moments are given by

t r—c¢
rlo” (1 + —)
7 (2.14)

(C—l)(T) , C>T.

o (t) =
‘We now prove the following theorems.

THEOREM 2.3. Let X be a continuous random variable in (0,00) with finite

moments of order r and the partial moments a,(t) are continuous in the support
of X. Then for anyr=1,2,...,

ar(t)or(s) = Cr ar (t+5+07ts), (2.15)
for allt, s >0 and o > 0 holds if and only if X has Lomax distribution.

PROOF. Assume that (2.15) holds. Taking A.(t) = C;lar(t) and v =

ot v = o~ ls,

Ar(ou)A,(ov) = Ar(ou + ov + ouw). (2.16)
Equation (2.16) can be written as
By(z—-1)B(y—1) = Br(zy - 1)
by writing z = (1 +u), y = (1 + v) and B,(u) = A,(ou). This is however

G(r,z)G(r,y) = G(r,zy),
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where G,(r,z) = B,(z —1). From Theorem 2.1, G(r,x) = "¢ and we can work
backwards to A,(t). Since C, = a,(0+), proceeding as in Theorem 2.1, we can
reach at (2.13). The converse part readily follows from (2.14) applied in (2.15).

U

THEOREM 2.4. The random variable X in Theorem 2.8 follows Lomax dis-
tribution (2.13) if and only if

a™(¢) = Cr o [a { (1 + §>n - 1}] . (2.17)

.PROOF. From (2.17), Cr = a,(0+)""! and hence (2.17) becomes
AMo{(1+u)—1}) = A (o{(1 +u™) - 1}) (2.18)

with A,(t) = a,(t)/a-(0+) and t = uo. Equation (2.18) now reduces to
Crv) = Cr(v™) (2.19)

by changing ¢{(1 + u) — 1} to v, by choosing some w = 1+u and v = o(w — 1).
Equation (2.19) has the solution v*~ and working back to A(-) we get the Lomax
law. The sufficiency part follows from the expression for a,(t). O

2.8. Exponential distribution

We present the following characterizations of the exponential distribution
specified by
Fiz)=1-¢e?, 2>0,A>0 (2.20)

whose partial moments are

rle=M

a-(t) = v

,r=1,2,.... (2.21)

THEOREM 2.5. For a random variable X defined over (0,00) with absolutely
continuous distribution function with finite moments of order v and continuous
partial moments o, (t), the relationship, for anyr =1,2,...,

ar(t)a,(s) = Cro(t +s), (2.22)

is satisfied for all t,s > 0 and a constant C, independent of t and s if and only
if X follows the exponential law.
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PROOF. When X has exponential distribution, substituting (2.21) in (2.22)
we verify that the conditions hold. Conversely when (2.22) is true, the functional
equation

B,(t) - By(s) = B.(t + s)
with B, (t) = a(t)/Cy holds, which has solution B,(t) = e~".
Further at all continuity points of F(t),

d
aar(t) = —ray_1(t)
giving
b, Cebt = rCp_1ebr—1t (2.23)

for (2.17) to be true for all t > 0, b, = b,_1 = A, a constant. Then
Cr=1A"Cr1 = TN Co.
Using the expression for a,(t) as in Theorem (2.21), we get

F(t)=1—e?.

REMARK 2.2.
1. By induction on (2.22),
o (t1) o (t2) - - ar(tn) = AP (0)ar(ty +t2 + -+« + tn).

When t, =tfori=1,2,...,n,
ol (t) = cpon(nt),

which is the result in Theorem 4 of Lin (2003). Specialising to r = 1,
ol (t) = cnoa(nt)

is also obtained by Lin (2003) in his Theorem 2.

2. Two other useful characteristic properties are

(a) ar(t—s)or(t — 5) = a7 (1),

(b) o (1t s ) = [ar(t)ar(s)]2.

The last property means that the partial moments at the arithmetic mean of

any two truncation points will be the geometric mean of the moments at those
points.
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2.4. Beta distribution

Consider the translated beta distribution with survival function

1—F(a;):(1—%)c,0<:c<R,R>0. (2.24)

This is used as a model of life lengths that possess linearly decreasing (increasing)
failure rate (mean residual life). The 7" order partial moments are

T - £\t
ar(t) = mR <1 - R) . (2.25)

The distribution function and the expression for o, (t) are similar to those of the
Lomax distribution and therefore the same type of arguments hold in proving the
following theorems.

THEOREM 2.6. Let X be a continuous random variable defined on (0, R)
with absolutely continuous distribution function, finite moments of order v and
continuous a,(t). Then, for anyr =1,2,...,

ar(t)ar(s) = Cror(t + s — R™'ts),

for some R > 0 and all t,s > 0 holds if and only if X has beta the distribution
specified in equation (2.24).

THEOREM 2.7. Under the condition of Theorem 2.6, the relationship

af(t)zcrar{R(l—%) —1}, r=0,1,2,...

holds for all 0 < t < R if and only if X has beta the distribution in (2.24).

It may be noted that the uniform distribution over (0, R) is a special case
of (2.24) when ¢ = 1 and accordingly we get the corresponding results from
Theorems 2.6 and 2.7 by specializing to C; = 1.

3. CONCLUDING REMARKS

We have established characterization theorems that extend the result of Lin
(2003) to other continuous probability distributions. The main applications of the
results proved above consist in (a) to derive partial moments at many other trun-
cation points when the corresponding values at a few points are known and (b) to
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calculate the complete moments E(X") from the partial moments. In fact, the C’s
in the various theorems are the usual moments and they can be computed using
the partial moments at any two points. Thus an approximate conclusion about
complete data in terms of truncated observations can be drawn, which can be of
some advantage in situations when the complete data is unavailable.
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