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WHEN CAN SUPPORT VECTOR MACHINE ACHIEVE
FAST RATES OF CONVERGENCE?!

CHANGYI PARK!

ABSTRACT

Classification as a tool to extract information from data plays an impor-
tant role in science and engineering. Among various classification method-
ologies, support vector machine has recently seen significant developments.
The central problem this paper addresses is the accuracy of support vector
machine. In particular, we are interested in the situations where fast rates
of convergence to the Bayes risk can be achieved by support vector machine.
Through learning examples, we illustrate that support vector machine may
yield fast rates if the space spanned by an adopted kernel is sufficiently large.
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1. INTRODUCTION

Classification as a tool to extract information from data plays an impor-
tant role in science and engineering. Among various classification methodologies,
support vector machine (SVM), introduced by Cortes and Vapnik (1995), has
recently seen significant developments. The central problem this paper addresses
is the accuracy of SVM, obtained by minimizing a penalized objective function
in binary classifications.

The classification literature based on machine learning is vast and what will be
cited below is very brief. Indeed, due to the enormity of the literature, we will only
cite those that bear a direct relevance to SVM. Zhang (2004) obtain the Bayes risk
consistency for convex margin losses. Steinwart and Scovel (2007) and Blanchard
et al. (2004) studied the convergence rates to the Bayes risk for SVM using
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Gaussian kernels. The difference of Steinwart and Scovel (2007) and Blanchard
et al. (2004) lies in the penalty term in the objective function. Blanchard et
al. (2004) adopt an L; penalty whereas Steinwart and Scovel (2007) uses an
Lo penalty. Bartlett et al. (2006) obtain rates of convergence for convex losses.
Finally Park (2006) provides an unified theory for both convex and nonconvex
losses.

To yield fast rates, the low noise assumption in Mammen and Tsybakov (1999)
is commonly adopted as in Steinwart and Scovel (2007), Bartlett et al. (2006)
and Park (2006). The rates in Steinwart and Scovel (2007) seem to be a bit faster
than those obtained in Bartlett et al. (2006) and Park (2006). The reason may be
the fact that Steinwart and Scovel (2007) impose an additional condition called
the geometric noise assumption. In this paper, we study the generalization error
rates for SVM through learning examples based on the results in Park (2006).
The focus of this study is to identify the situations where SVM can achieve fast
rates.

This paper is organized as follows. Section 2 sets out the notation and pre-
liminaries. Section 3 discusses the situations where fast rates can be obtained
through learning examples.

2. GENERALIZATION ERRORS

The basic components of classification involve the input space X' C R?, an
output space ¥ = {—1,+1}, a (measurable) decision function f : X — R, and a
training sample {(X;, Y;)}™,, consisting of a random sample on the joint proba-
bility space (X x Y,0(X) x 2Y,P(-,-)) with o(X) a o-field on X.

Classification is performed using the training sample to construct f such that
the sign, sign(f), the classifier, decides the class assignment of an input z € X.
The performance is determined by the margin, y f(z), where (z,y) € X x ), with
a correct classification being determined by yf(x) > 0. Consequently, the overall
performance of a classifier is determined by the margin.

SVM minimizes the objective function Y, ; V(¥;f(X;)) over a class of can-
didate decision functions f € F, where V(z) = [1 — 2]+ = max{0,1 — z} is the
hinge loss and F is a class of functions, the parameter space. To prevent over-
fitting, a nonnegative penalty functional J(f) is added to yield the constrained
optimization problem of minimizing

U(f) =Y Vif(X:) + AI(f) (2.1)
i=1
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over F where A > 0 is a penalization constant for the penalty functional J. Sim-
ilar to other penalization procedures, see for example, Wahba (1990), A controls
the trade-off between the training error and the penalty. The minimizer of (2.1)
with respect to f € F yields an estimated decision function f , and hence the
classifier sign( f).

In machine learning, the penalty functional is usually the inverse of the ge-
ometric margin. In particular, for the linear case, the geometric margin with
respect to a linear decision function f is defined to be 2/||w||%, where f(z) =
(w, z)+b is a hyperplane with (-, -) the usual inner product on R and b € R. Inthe
nonlinear case, the geometric margin is 2/|lg|% = 2/ Y1) Y5 cua; K (i, 5),
where f has the representation g(z)+b=3 ., ;K (z,z;)+band K : AxX — R
is a proper kernel assumed to satisfy Mercer’s condition (Mercer, 1909). This en-
sures that ||g||% is a proper norm.

Minimizing (2.1) is the empirical version of minimizing EV (Y f(X)). In par-
ticular, denote by fy, the minimizer of EV(Y f(X)). Then

ev(f, fv) =EV(Y f(X)) - EV(Y fv(X)) (2.2)

is known as the excess surrogate risk, where fy is a measurable function.
Misclassification loss is defined by

L(z) = %(1 _ sign(2)).

The Bayes classifier is defined as f = sign(f*) where f*(z) = P(Y = 1|X =
z) — 1/2 is the Bayes rule obtained by minimizing the generalization error,
EL(Y f(X)), over all measurable f. The excess risk is defined as

e(f,f) = EL(Y f(X)) - EL(Y f(X)) > 0. (2:3)

Note that f can be taken as fy for the hinge loss.

Finally, we introduce a complexity measure, called the Lo-metric entropy with
bracketing, of a function class F. Given any € > 0, the set {( f]l-, ) ;-Vzl is called
an e-bracketing function of F if for any f € F, there is a j such that fJL- <L}
and ||f} — f}“z < eforall j =1,...,N where || - |2 is the Ly-norm. The Lo-
metric entropy Hp(e, F) of F with bracketing, is defined as the logarithm of the
cardinality of e-bracketing function of F of the smallest size. For example, let
F be a class of monotone functions f : R — [0,1]. Then Hpg(e, F) < O(1/¢).
Heuristically, we see that [0,1] can be covered by C(1/¢) balls with radius e,
where C is a positive constant independent of €. See van der Vaart and Wellner
(1996) for the proof.



370 CHANGYI PARK

3. FAsT RATES OF CONVERGENCE

In this section, we study the convergence of the excess risk of f obtained from
minimizing the objective function (2.1). Particularly, we are interested in those
situations where fast rates can be achieved. It is believed that SVM may yield
fast rates with the low noise assumption in place, if the space spanned by an
adopted kernel is sufficiently large.

In Bartlett and Shawe-Taylor (1998), it is indicated that the rate for linear
SVM is n~1/2 in nonseparable cases and n~! in separable cases. We illustrate
that fast rates can be obtained in separable cases for SVM with a polynomial
kernel. Note that the linear kernel is a special case of a polynomial kernel. For
nonseparable cases, we also illustrate that fast rates can also be obtained by
SVM if the adopted kernel K is sufficiently smooth that the spanned space F
can approximate the true decision function closely.

Throughout this section, it is assumed that X = {z € R%: 21 +--- + 22 < 1}
is the unit ball in R? for d > 1 and the underlying marginal distribution on X’ is
uniform. C denotes a positive generic constant throughout. To apply the results
in Corollary 4.3 of Park (2006), we check the conditions A3, A5, and A6. We will
assume that A2 is met, i.e., F is uniformly bounded.

3.1. A separable case

Suppose that the true decision function f;(z) is a polynomial of degree p; > 1.
The positive class label Y = +1 is assigned if z; > 0 and the negative class label
Y = —1 is assigned otherwise for any x € X'. Then the classification problem is
separable.

Let K(z,y) = ((z,y) + 1)P for z,y € X be a polynomial kernel of order
p > p;. This kernel induces F consisting of all polynomials of order at most
p. From (83) and (84) in Kolmogorov and Tikhomirov (1959), it follows that
Hp(e, F) = O((1/€)¥/P).

Since the classification problem is separable, the low noise assumption A6
is satisfied with & = +o0o. With the choice of f, = nfi, eyv(fa, f) = O(n71),
implying A3 with sy = 1. By A5, we have ¢, = n~P/(2P+d) when (nAJ,) "t ~
n~4/(2p+d) By Corollary 4.3 in Park (2006), we have

e(f,f)=0 (n‘ff% log (%))

except for a set of probability less than some small § > 0 and Ee( f, f) =
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O(n~=2P/(2p+4))_ Hence the rate is faster than n~1/2 for p > d/2.

3.2. A nonseparable case

Let us consider a nonseparable classification problem with a mixture distribu-
tion as the underlying distribution. Assume that the underlying joint distribution
P(-,-) of (X,Y) is the mixture distribution of two normal distributions with mean
vector pi; ¢ = 1,2 and common covariance matrix I, where py = (+1,0,. .. ,0)/
and up = (—1,0,...,0). Suppose that the priors for classes are equal. By
Bayes’ Theorem, p*(z) = (1 4+ exp(—2z1))~". Denote the true decision function
as fi(z) = z1.

Consider the Gaussian kernel

K(z,y) = exp (—M) ,

202

where & > 0. Let F be the space of functions induced by this kernel. The metric
entropy of F in sup-norm is given by Hoo(e, F) = O((log(1/e))4+!) by (4.8) of
Zhou (2002). It is easy to show that Hg(e, F) = O((log(1/€))4t1).

For any sufficiently small § > 0,

Pz e X:|f*(z)| <9) SP(ﬂﬂGX:l“’l“‘”T' 521“(133))

<P(xreX:|r1—z7| <C9)
= 0(9)

using Taylor series expansion. Hence A6 is satisfied with a = 1. We can
take a sequence of bounded functions {tanh(nf;)} in C*°(X) converging to f
in sup-norm. Hence A3 is satisfied with some 0 < sy < 1 because C*°(X)
is a subset of the space spanned by F. From the metric entropy equation
in A5, e, = n~Y3(logn)@+D/3. By Corollary 4.3 in Park (2006), we have
e(f,f) = O(n23(logn)H¢+1/310g(1/5)) except for a set whose probability
tends to zero and Ee(f, f) = O (n=2/3(logn)X4+1)/3). Due to the approxima-
tion error, the rate is at best n=2/3(logn)(¢+1)/3. Note that, in nonseparable
cases with & = +o00, the best possible rate is n~! up to some factor of logn
under the condition that the approximation error rate n~°v does not impede the
estimation error rate.

From the examples, one can see that SVM may yield faster rates than n=1/2
under the low noise assumption. To be more precise, if the function space spanned
by a specific kernel is sufficiently large so that the function space can approximate
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the true decision function closely, then SVM may be able to yield fast rates. In
this sense, the choice of an appropriate kernel for SVM is important in optimizing
the predictive performance of SVM. If the spanned space by the chosen kernel is
not sufficiently large, then SVM may not achieve its best predictive performance.
On the other hand, if the spanned space is too large, then the convergence can
be slowed down due to the increased complexity of the function space over which
the optimization of (2.1) is carried out.
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