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NEW EXPRESSIONS FOR REPEATED LOWER TAIL
INTEGRALS OF THE NORMAL DISTRIBUTION

CHRISTOPHER S. WITHERS! AND SARALEES NADARAJAH?

ABSTRACT

The recent work by the authors (see, Withers, 1999; Withers and Mc-
Gavin, 2006; Withers and Nadarajah, 2006) provided new expressions for
repeated upper tail integrals of the univariate normal density and so also for
the general Hermite function. Here we derive new expressions for repeated
lower tail integrals of the same. The calculations involve the use of Moran’s
L-function and the Airy function. In particular, the Hermite functions are
expressed in terms of Moran’s L-function and vice versa.
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1. INTRODUCTION

Let ¢(x) and ®(z) be the density and distribution of a unit normal random
variable N ~ N(0, 1):

8(@) = @) 2P, @@) = PV <o) = [ o)y
—00
Denote by D the differential operator and by (—D)~! the upper integral operator
1 (o o]
(D)@ = [ f@)s.
T

For an integer n, set

Hy = Hy(z) = e 2(=D)"e™*"/2,
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So forn=1,2,...,

Hoolo) = o)™ [ dar [ doa-o- [ " drnd(an),

Tn-1

" dzn(zn).

z T
T T In
Hooea) = 9@ [ am [ dageee |
Y )

x>

Here H,, is known as the Hermite polynomial for n > 0 and as the Hermite func-
tion for n < 0. H_; is known as Mills’ ratio: H_1(z) = ®(—z)/#(z). These
repeated integrals are directly useful in many applications. Three statistical ap-
plications given by Fisher (1931) are:

1. in the calculation of moments of truncated normal distribution,
2. in the expression of the non—central ¢ density and

3. in the posterior distribution of a Poisson variate with chi-squared prior for
the squared mean parameter of the Poisson variate.

Recently, Goodall and Mardia (1991) and Mardia (1998) have shown that the

repeated integrals occur also in the calculation of shape distributions.
Withers (2000) showed that the Hermite polynomials are the moments of
x + 1N where ¢t = /-1:

H,(z) = E(x+iN)" for n=0,1,2,..., (1.1)

giving the well known result

H, = Z (—l)khnk,.’rn_2k

0<k<n/2

for hpx = ni2~%/{k!(n — 2k)!}, where k is an integer. In particular, Ho = 1,
H =z Hy=22—-1,Hy =233z and Hy = z* — 622 + 3. One can view (1.1)
as a linear transformation of " to Hy(z), say

H,(z) = Koz, where Kof(z) = Ef(z +iN).
The inverse linear transformation of Hy(z) to ™ is

z" = K1Hy(z) for n=0,1,2,..., where K, f(z) = Ef(z + N).
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(This follows by replacing (z,N) in (1.1) by (z + N1, N2), where N1, Ny are
independent N(0,1), and using the well known result

ENl =0 for n=1,2,...,

where N, = N; + iNy is known as the complex normal CN(0,2), see, Miller,
1974, 1975). So Ko, K1 take a polynomial of degree n to others of degree n and
a sufficiently convergent power series to other power series. For example

42 2
Koet:c L /2, Icletz — lTtt /2'

Note that K1 is a linear integral operator with kernel ¢(x —y) not in La: [ ¢(z—
y)2dzdy = 00, so Fredholm theory does not apply.

Withers and McGavin (2006) showed that the Hermite functions are the neg-
ative moments of x + iN:

H_,(z) =Koz " =E(x+iN)™ for >0, n=12,....

That is, (1.1) also holds when n is a negative integer and z is real and positive.
So
E (z +iN)™" =sign(z)" H_n(|z|) forreal z#0, n=1,2,....

However, K1z~™ does not exist for n = 1,2,..., Withers and McGavin (2006)
also showed that for x > 0 and n > 0,

nlH_n_1(z) = (2m)*EI(N > 0)N"e™*V
= (-D)"H-1(2)
= (=1)"(Hp(z)H-1(z) — Po-1(2)), (1.2)

where I(A) is the indicator function, P_; = 0 and for n > 0, H;; = Hy(z) and
P, = P,(z) are polynomials of degree n: :

Hi(z) = e /2D P =Kia" =E (z+ N)"= > hua" 2,
0<k<n/2

k
Po(z) = Y. Pua"%/(n—2k)! for Py = > (n—k+j5)277/3,
0<k<n/2 j=0

Hf =1 Hf =z, H} =12® +1, H} =2° + 3z, Hf =z +62° +3,...,
Po=1 P =z Po=1*+2, Ps=a%+5z, Py=2*+92%2+8,....
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Here H}(z) is known as the modified Hermite polynomial and was introduced by
Fisher (1931). Since Ky is the inverse of K1,

z" = KoH,(z) for n=0,1,....
Note that
Hy(z) = i"E(—iz + N)" = i"H,(—ix).

However, Fisher (1931) did not give H_, for negative argument. Withers and
Nadarajah (2006) showed that for > 0 and n =0,1,...,

BH-p1(~) = nl(~1)" Hopa(2) + Hy(2)/9(2)
= H(0)H-1(~2) + Paa(2)

and
H_,(0) = 2?T(n/2+1)/n! for n=1,2,.... (1.3)

Withers and Nadarajah (2006) also established alternative expressions for the
Hermite functions H_,(z) given by

H_,(z) = z" Z (=2*) T an;Jn—j(z) for z >0 and n > 0,

0<j<n/2

where
Jp = Jyp(z) = E(z? + N?)™

and a,; is some constant.

In this paper, we derive new expressions for repeated lower tail integrals of the
normal distribution. Two functions that will be of help with this investigation
are Moran’s L-function (Moran, 1983) and the Airy function (Airy, 1931) defined
by

Hho(z) = (=D) ™" e /2 = H_,_(z)e™"/2, (1.4)

See Fisher (1931) in his introduction to the tables of Hhy, by Airy (1931). Also,
Fisher (1931) provided applications of

In(z) = kn-1(z) = (=D) " ¢(z) = $(0)Hhn(2) = ¢(z) H-n-1(2)

to the Student’s ¢, truncated normal and modified Poisson distributions; see Note
1.1 of Withers and McGavin (2006) for some errors.

Our results are organized as follows. In Section 2, we express the Hermite
functions in terms of Moran’s L-functions and vice versa. Section 3 derives ex-
pressions for the repeated lower integral I nete®/2 where If (z) = fox fy)dy.
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2. HERMITE FUNCTIONS IN TERMS OF MORAN’S L-FUNCTIONS

Here we express H_,(z) in terms of Moran’s L-functions and vice versa. We
also derive several recurrence relations for the latter and show how they lead to
a known result.

Expanding the equation before (A.1) of Withers and McGavin (2006), for
m>1,

H_p(z)=H_,= ZLk Y1k (n— 1 — k)Y,

where, for any %,

Ly = Li(z / d(y)y*dy.
Conversely expanding (y — z + z)* gives
o
Ly =) (k)ng* "H_p-y for k20.
n=0

Moran’s expansion for the distribution of the multivariate normal is also written
in terms of these Ly, functions (see Moran, 1983; Kotz et al., 2000, p. 141). They
satisfy

Lo=H_,, =1

and integrating by parts
Ly = o1+ (k — 1)Lg—o. (2.1)
So forr =2,4,...,

Ly =a" +rz" 2 4r(r— 2zt +
+r(r—2)(r—4)---2

and forr =1,3,5,...,

Ly =a" +ra" 24 r(r—2)a"*+ -
+7r(r—2)---3-le+r(r—2)---3-1H_;.

Similarly we can express L_gi in terms of H_; and L_gx_1 in terms of L_;:

Lo = z - H_,,
Ls=(z"2-L_)/2,
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Loy=(z"% -2 '+ H.)/3
Ls=xz%4—(z"2-L1)/4-2,
Lg=z°/5-273/53+ @ '~H_)/5-3-1,
Lo;=25/6—27%/6-44+(z72—L_1)/6-4-2

and so on. Similarly putting k = 0,2, ... in (2.1), we obtain (26.2.12) of Abramow-
itz and Stegun (1964), which we write as
n . . -
H_y =) (-1Yz ¥ 'ENY + (=1)""L_g,2(x)EN?"*2 for n > 0.
§=0
3. REPEATED FINITE INTEGRALS OF e+*'/2

Analogous to (1.4) let us define the complementary Airy function as the re-
peated lower tail integral

Gnl(z) = Ime="/% for If(z) = /Ow fly) dy, n>0. (3.1)

In this section, we derive two expressions for computing (3.1), one based on
Taylor series expansion and the other based on numerical integration. A third
expression is given by expressing (3.1) in terms of Hhy, and vice versa. We also
introduce some modified versions of (3.1) and Hh, and discuss their computation
with extensions for negative n.

One can easily calculate G, in (3.1) from its Taylor series as follows. For zo
in R, if go : R — R is any function with a Taylor series expansion about zo then

gn{z) = (/: dm)ngo(x) forn >0

0

has Taylor series -
gn(z) = goj(x — zo)’"/(j + )},
§=0
where
g0 = 65 (o).
Applying this with 2o = 0, Go(z) = e/ Go2t+1 = 0 and

Gozr = (—2)7F(2k)!/k! = (-1)FEN?,
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we get the Taylor series of G, about 0,

Gn(z) = i Go k1™ (2k + n)! | (3.2)
= I;]%“”Kn(Nx) (3.3)
for -
K(z) = Z(—l)kx2k+"/(2k +n)! =D 'K, 1(z) = D" cosz.
k=0
So for k > 0,

b

-1

(—x"‘)j/(%)!} = (-1)F {Z(—x2)j/(2j)!} :

j=k

Kox(z) = (-1)F {cos:c -

(=]

.

x
—

o

.

Kak1(2) = (-1)° {Sinx - Y (=125 + 1)!}

= (-1)* {i(—l)j$2j+1/(2j + 1)!} .

i=k

So (3.2) gives a power series method for computing Gy, while (3.3) gives a nu-
merical integration method. For n =0,1,...,6, (3.3) gives

e~*'/2 = Go(z) = EKo(Nz) = E cos Nz,
T
en) 6@ - 12 = [ ey = i
= EN7!'K,(z) = EN"!sin Nz,

2¢=2°/2 = EN"2(1 — cos Nz),
3¢=2"/2 = EN~3(Nz — sin Nz),
—4¢=2°/2 = EN~*{cos Nz — 1 + (Nz)?/2},
D 5¢=%"/2 = EN~5{sin Nz — Nz + (Nz)%/3!} and
D% /2 = EN%{—cos Nz + 1 — (Nz)?/2! + (Nz)*/41}.

D
D
D

These expressions would not seem a good way of calculating their LHS as the
functions on the RHS vary rapidly. Also

@) = ([ dw)ngo = [ -0 s/ (n - 1.

0 V]
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To express Gy, in terms of Hh,_1, we first express g, with o = 0 in terms of
hyn = hn(z) = (=D)"go.

Here gq is any function such that h,, exists for z > 0, n > 0. Since [ = [ i

(@) = /0 " go = ha(0) - hn(z),

92(z) = /0-"“' g1 = h1(0)z — h2(0) + h2(z) and

n—1
gal2) = (=1)" {hnm - Zhn—j(O)(—w)j/j!} .

i=0

—z2/2

Taking go = e gives

n—1
(~1)"Gn(2) = Hon(@)e /% = Y~ H_nj(0)(=2) /3",
=0

where H_,(0) is given by (1.3). Conversely Hh,—1(z) = H _n(.'z:)e'mZ/ 2 is given
in terms of Gn(z) by

n—1
H_n(z)e ™™/ = (=1)"Gn() + Y_ H_n;(0)(—2)’ /3.
§=0
We now introduce the modified version of G, of (3.1) given by

G = G(z) = D% for n>0
= /Oz(x — )" tgo(y)dy/(n—1)! for n>1. (3.4)
Alternatively let us define the modified Airy function, for n > 0 as
Hh:(z) = D1 /2,
So G = Hh},_,. By the method above we have
G(z) = i |Go ak|z®* ™/ (2k + n)! (3.5)

k=0
— EN""K*(Nx) (3.6)
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for
Ki(z) =3 a7 /(2k +n)! = D' K;_;(z) = D" coshz.
k=0

So for k > 0,

k-1
Ko (z) = {cosh:c——Za:Z"/ (2n) } Zm%/ (2n)!
n=0
k-1
Kopq(z) = {smhx Zas2"+1/(2n+1 } Zx%“/ (2n+ 1)L

n=0

So (3.5) gives a power series method for computing Gy,, while (3.6) gives a mu-
merical integration method. For n =0,1,...,6, (3.6) gives

/2 = Ecosh Nz,

D~ 1e*’/2 = EN~'sinh Nz,

D 2¢*’/? = EN~%(cosh Nz — 1),

D3/ = EN~3(sinh Nz — Nz),

D4e*'/? = EN"*{cosh Nz — 1 — (Nz)?/2!},

D5¢**/2 = EN~5{sinh Nz — Nz — (Nx)®/3!} and

D 8¢7°/2 = EN“{cosh Nz — 1 — (Nx)?/2! - (Nz)*/41}.
Unfortunately we do not have a proper extension of Hj to negatlve n, as for real

z, E(x + N)™ does not exist for negative n and (-D)~ 1¢2°/2 = 0. However a
near miss is given by the function

T, =Ty ( ) —:x:z/ZG* _ —:rz/2D—ne:1:2/2’ n>0

H

in that it satisfies
Th_1= (D + :E)Tn,

as compared with
Hy . = (D+z)H;.

We can view T3 as a modified Mills’ ratio. From DT} = 1 — zT;, we obtain the
analog of (1.2) given by

(=D = H, Th + P;_,,
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where

P, = (—i)nPn(’l;.’L‘),

n

P =1,
P} =z,
P} = 2% -2,

P} = 2 — 5z,
Pf =a* 922 +8,
P? = 25 — 142® + 33z,
P} = 2% — 20a* + 872% — 48,
Py =27 — 272" + 1852° — 279z,
Pr = x® — 3525 + 3452* — 97527 + 384
and so on. We now show that T, can also be expressed as linear in T}. By (3.4)

forn>1

n

T =Y 2" 7 H(=1)FL/{(n - 1 - k)k!}, (3.7)
k=0
where for k£ > —1,
T
L = e_x2/2/0 yke¥’ 12dy.
They can be written in terms of
Ly=Ti, Lj=1-¢/2,
using the recurrence relation (integrating by parts),
Lt=zF'—(k-1)L;_, for k>1.
So
Ly =z — Ly, §:x2—2L*,
L =2 —3c+3Ly, L} =a*—4a® +4-2L]
and for r = 2,4,6,...,

Liy =" —ra 2 dr(r -2t -
+ (_1)7'/2—}—1,’,.(,’. —2)(r - 4)-- '4(332 —2L})
r r —z?
= Ly + (C17PR2P /27,
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where L' can be written in terms of Moran’s L-function L, as
r1 =1 Lry1(z/9)
and for r =3,5,...,
=2 e (- ) A
+ (=)D 2p(r — 2) ... 3(z — L§).

A converse of (3.7) is obtained by expanding (y — z + z)*, giving

k
k= Z(—l)n(k)nfbk—"TnH for k> 0.
n=0
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