DOI QR코드

DOI QR Code

Theoretical Calculation on Radiation Patterns of Epi-signal in CARS Microscopy

간섭성 반스톡스 라만 산란 현미경 후방 신호지 방사패턴에 관한 이론계산 연구

  • 유용심 (한국표준과학연구원 기반표준부) ;
  • 조혁 (충남대학교 물리학과)
  • Published : 2007.08.25

Abstract

We theoretically investigated the far-field radiation pattern of epi-signal from a polystyrene sphere in coherent anti-Stokes Raman scattering (CARS) microscopy with an objective lens of high numerical aperture. We calculated the field distribution of the incident laser beams under the tight-focusing condition and the far-field radiation pattern through coherent addition of radiation from the nonlinear polarizations (Hertzian dipoles) as the origin of CARS signal generation. The epi-radiation patterns for polystyrene spheres of different diameters are calculated, and the pattern of a sphere is also compared with that of a shell fer a diameter of 1100 nm. We finally show how the radiation pattern of the polystyrene sphere changes as the center of the sphere shifts from the focus of the beam.

높은 수치구경의 대물렌즈를 사용하는 간섭성 반스톡스 라만 산란 현미경(coherent anti-Stokes Raman scattering microscopy)에서 폴리스틸렌구에서 발생한 신호의 먼거리장 방사패턴에 대한 이론적 계산 연구를 수행하였다. 극초점 조건에서 입사 레이저 광의 전기장 분포를 계산하였고, CARS 신호 생성원인인 비선형 분극(헤르치안 쌍극자) 방사의 간섭성 합을 통하여 먼거리장 방사 패턴을 계산하였다. 폴리스틸렌구의 크기에 따른 후방 방사패턴을 계산하였고, 1100 nm 직경을 가진 폴리스틸렌구와 폴리스틸렌 구껍질의 방사패턴을 비교하였다. 또한, 극초점으로부터 폴리스틸렌구의 중심이 이동함에 따른 방사패턴의 변화를 보였다.

Keywords

References

  1. E. O. Potma, C. L. Evans, and X. S. Xie, 'Heterodyne coherent anti-Stokes Raman scattering imaging,' Opt. Lett., vol. 31, no. 2, pp. 241-243, 2006 https://doi.org/10.1364/OL.31.000241
  2. X. Nan, E. O. Potma, and X. S. Xie, 'Nonperturbative Chemical Imaging of Organelle Transport in Living Cells with Coherent Anti-Stokes Raman Scattering Microscopy,' Biophys. J, vol. 91, no. 2, pp. 728-735, 2006 https://doi.org/10.1529/biophysj.105.074534
  3. L. Li and J.-X Cheng, 'Coexisting Stripe-and Patch-Shaped Domains in Giant Unilamellar Vesicles,' Biochem., vol. 45, no. 39, pp. 11819-11826, 2006 https://doi.org/10.1021/bi060808h
  4. Y. Fu, H. Wang, and J.-X. Cheng, 'Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy,' Opt. Express, vol. 14, no. 9, pp. 3942-3951, 2007 https://doi.org/10.1364/OE.14.003942
  5. M. Muller, J. Squier, C. A. de Lange, and G. J. Brakenhoff, 'CARS microscopy with folded BOXCARS phasematching,' J. Microsc., vol. 197, pp. 150-158 2000 https://doi.org/10.1046/j.1365-2818.2000.00648.x
  6. J. A. Shirley, R. J. Hall, and A, C. Eckbreth, 'Folded BOX-CARS for rotational Raman studies,' Opt. Lett., vol. 5, pp. 380-382, 1980 https://doi.org/10.1364/OL.5.000380
  7. A. Zumbusch, G. R. Holtom, and X. S. Xie, 'Three dimensional vibrational imaging by coherent anti-Stokes Raman scattering,' Phys. Rev. Lett., vol. 82, no. 20, pp. 4142-4145, 1999 https://doi.org/10.1103/PhysRevLett.82.4142
  8. G. C. Bjorklund, 'Effects of focusing on third-order nonlinear processes in isotropic media,' IEEE J. Quantum Electron., vol. QE-11, pp. 287-296, 1975 https://doi.org/10.1109/JQE.1975.1068619
  9. J.-X. Cheng, A. Volkmer, and X. S. Xie, 'Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,' J. Opt. Soc. Am. B, vol. 19, no. 7, pp. 1363-1375, 2002 https://doi.org/10.1364/JOSAB.19.001363
  10. E. O. Potma, W. P. de Boeij, and D. A. Wiersma, 'Nonlinear coherent four-wave mixing in optical microscopy,' J. Opt. Soc. Am. B, vol. 17, no. 10, pp. 1678-1684, 2000 https://doi.org/10.1364/JOSAB.17.001678
  11. Y. R. Sherr, The Principles of Nonlinear Optics, (John Wiley and Sons Inc., New York, 1984) p. 268
  12. J.-X Cheng and X. S. Xie, 'Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications,' J. Phys. Chem. B, vol. 108, no. 3, pp. 827-840, 2004 https://doi.org/10.1021/jp035693v
  13. L. Moreaux, O. Sandre, and J. Mertz, 'Membrane imaging by second-harmonic generation microscopy,' J. Opt. Soc. Am. B, vol. 17, no. 10, pp. 1685-1694, 2000 https://doi.org/10.1364/JOSAB.17.001685
  14. S. G. Guha and J. Folk, 'The effects of focusing on the efficiency of coherent anti-Stokes Raman scattering,' J. Chem. Phys., vol. 75, no. 6, pp. 2599-2562, 1981 https://doi.org/10.1063/1.442412
  15. L. C. Davis, K. A. Marko, and L. Rimai, 'Angular distribution of coherent Raman emission in degenerate four-wave mixing with pumping by a single diffraction coupled laser beam: configurations for high spatial resolution,' Appl. Opt., vol. 20, pp. 1685-1690, 1981 https://doi.org/10.1364/AO.20.001685
  16. W. Kaabar and R. Devonshire, 'A versatile model of CARS signal generation: optimum diameter ratios for different phase-matching geometries,' Chem. Phys. Lett., vol. 186, no. 6, pp. 522-530, 1991 https://doi.org/10.1016/0009-2614(91)90462-I
  17. J.-X. Cheng and X. S. Xie, 'Green's function formulation for third-harmonic generation microscopy,' J. Opt. Soc. Am. B, vol. 19, no. 7, pp. 1604-1610, 2002 https://doi.org/10.1364/JOSAB.19.001604
  18. A. Volkmer, J.-X. Cheng, and X. S. Xie, 'Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,' Phys. Rev. Lett., vol. 87, no. 2, pp. 0239011-0239014, 2001 https://doi.org/10.1103/PhysRevLett.87.023901
  19. B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A, vol. 253, no. 1274, pp. 358-379, 1959 https://doi.org/10.1098/rspa.1959.0200
  20. J. D. Jackson, Classical Electrodynamics (John Wiley and Sons Inc., New York, 1975) p. 395
  21. H. Lotem, R. T. Lynch, Jr., and N. Bloembergen, 'Interference between Raman resonances in four-wave difference mixing,' Phys. Rev. A, vol. 14, pp. 1748-1755, 1976 https://doi.org/10.1103/PhysRevA.14.1748